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Abstract—Recent advances in virtual reality cameras have contributed to a phenomenal growth
of 360° videos. Estimating regions likely to attract user attention is critical for efficiently
streaming and rendering 360° videos. In this article, we present a simple, novel, GPU-driven
pipeline for saliency computation and virtual cinematography in 360° videos using spherical
harmonics (SH). We efficiently compute the 360° video saliency through the spectral residual of
the SH coefficients between multiple bands at over 60FPS for 4K resolution videos. Further, our
interactive computation of spherical saliency can be used for saliency-guided virtual
cinematography in 360° videos.

WITH RECENT advances in consumer-level
virtual reality (VR) head-mounted displays (HMD)
and 360° cameras, omnidirectional videos are
becoming ubiquitous. These 360° videos are
becoming a crucial medium for news reports, live
concerts, remote education, and social media. One
of the most significant benefits of 360° videos
is immersion: users have a sustained illusion of
presence in such scenes. Nevertheless, despite
the rich omnidirectional visual information, most
of the content is out of field of view (FoV) of
the head-mounted displays, as well as human
eyes. The binocular vision system of human eyes
can only interpret 114° FoV horizontally, and

135° FoV vertically. As a result, over 75% of the
360° videos are not being perceived. Furthermore,
as shown in Table 1, almost 90% of pixels are
beyond the FoV of the current generation of
consumer-level VR HMDs.

Therefore, predicting where humans will look,
i.e., saliency detection, has great potential over a
wide range of applications, such as:

• efficiently streaming 360° videos under con-
strained network conditions [1],

• salient object detection in panoramic images
and videos [2],

• information overlay in panoramic images,
videos, and for augmented reality displays [3],
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(A) Saliency map by our SSR model (B) Optimized camera trajectory (C) Results of virtual cinematography

Figure 1. (A) shows the saliency map computed by our spherical spectral residual (SSR) model in 21.34 ms on
a CPU and 10.81 ms on a GPU. (B) shows the optimized camera trajectory in blue. (C) shows four rendering
results of virtual cinematography using our shader opensourced at https://shadertoy.com/view/ldBczm.

• directing the user’s viewpoint to salient objects
or automatic navigation and synopsis of the
360° videos [4].

Saliency of regular images and videos has
been well studied thoroughly since Itti et al. [5].
However, unlike classic images which are stored
in rectilinear or gnomonic projections, most of
the panoramic videos are stored in equirectangular
projections. Consequently, classic saliency may
not work for 360° videos due to the following
challenges (as further shown in Figure 6):

• Horizontal clipping may slice a salient object
into two parts on the left and right edges, which
may cause a false negative result.

• Spherical rotation may distort the non-salient
objects near the north and south poles, which
may cause a false positive result.

Our work addresses three interrelated ques-
tions: (a) how should we formulate the saliency
in SO(2) space1 with spherical harmonics, (b)

1SO(2) space represents all 2D rotations of the image sphere
surrounding the observer.

Visual 

Medium

Approximate Field of View (FoV)
Ratio Beyond FoV

Horizontal Vertical

Human Eyes 114° 135° 76.25%

HTC Vive,
Oculus Rift 85° 95° 87.53%

Samsung 
Gear VR 75° 85° 90.16%

Google 
Cardboard 65° 75° 92.48%

Table 1. The approximate binocular field of view of
human eyes, as well as the current generation of consumer-
level head-mounted displays.

how should we speed up the computation by
discarding the low-frequency information, and
(c) how should we automatically and smoothly
navigate 360° videos with saliency maps?

To investigate these questions, we present a
novel GPU-driven pipeline for saliency computa-
tion and virtual cinematography based on spherical
harmonics (SH), as shown in Figure 1. Spherical
harmonics is the spherical analog of a 2D Fourier
transform for planar 2D images and transforms the
360° images into frequency domain in spherical
coordinates.

Our model reveals the multi-scale saliency
maps in the spherical spectral domain and reduces
the computational cost by discarding low bands
of SH coefficients. From the experimental results,
it outperforms the Itti et al. model by over 5× to
13× in timing, and runs in real time at over 60
frames per second for 4K videos on present-day
personal computer hardware.

Related Work [SIDEBAR]
Our work builds upon a rich literature of prior

art on saliency detection and spherical harmonics.

Visual Saliency
A region is considered salient if it has percep-

tual differences from the surrounding areas that
are likely to draw visual attention. Prior research
has designed bottom-up [5] top-down [6], and
hybrid models for constructing a saliency map
of images (see the review by Zhao et al. [7]).
The bottom-up models combine low-level image
features from multi-scale Gaussian pyramids or
Fourier spectrum. Top-down models usually use
machine learning strategies and take advantage of
higher-level knowledge such as context or specific
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tasks for saliency detection. Recently, hybrid
models using convolutional neural networks [8]
have emerged to improve saliency prediction.

One of the most pivotal algorithms for saliency
detection remains the Itti et al. model [5]. This
model computes the center-surround differences
of multi-level Gaussian pyramids of the feature
maps, which include intensity, color contrast,
and orientations, as conspicuity maps. It further
combines the conspicuity maps with non-linear
combination methods and a winner-take-all net-
work. Another influential algorithm is the spectral
residual approach [9], which computes the visual
saliency by the difference of the original and
smoothed log-Fourier spectrum of the image.

However, these and other image saliency ap-
proaches assume the input data as rectilinear
images, which would not output consistent results
for spherical images with horizontal clipping
or spherical rotation. Inspired by the Itti et al.
model [5] and the spectral residual approach [9],
we formulate a spherical spectral residual model
in the SO(2) space. Our model achieves spherical
consistency and can be applied to real-time virtual
cinematography of 360° videos.

Spherical Harmonics
Spherical harmonics are a complete set of

orthogonal functions on the sphere (Figure 2),
and can be used to represent functions defined on
the surface of a sphere [10]. In visual computing,
spherical harmonics have been widely applied
to various domains and applications including,
indirect lighting, volume rendering, spatial sound,
and 3D object retrieval. In the present work, we

Figure 2. The first five bands of spherical harmonics
functions. Blue and red indicate positive and negative
values respectively. See https://shadertoy.com/view/
4dsyW8 for a live demo built upon Íñigo Quı́lez’s work.

use spherical harmonics to efficiently evaluate
visual saliency by the difference of the high-
frequency and low-frequency spectrum. [END
SIDEBAR]

Computing the Spherical Harmonics
Coefficients

We begin by preprocessing the SH coefficient
for representing the 360° videos. Our pipeline pre-
computes a set of the Legendre polynomials and
SH functions and stores them in GPU memory.
We adopt the highly-parallel prefix sum algorithm
to integrate feature maps of the downsampled
360° frames as 15 bands of spherical harmonics
coefficients on the GPU.

Evaluating SH Functions
First, we precompute the SH functions at each

spherical coordinate (θ ,φ) of the input panorama
of N×M pixels. Since the values in the feature
maps, which are used to define the intensity and
color contrast are positive and real, we compute
only the real-valued SH functions, Y (θ ,φ), also
known as the tesseral spherical harmonics, as
shown in Figure 2 and detailed in [10] and [11].

Evaluating SH Coefficients
Next, we extract the feature maps such as the

intensity I, red-green (RG) contrast, and blue-
yellow (BY) contrast, inspired by the Itti et
al. ’s model [5] and the MATLAB package
SaliencyToolbox by Walther and Koch [12]:

RG =
r−g

max(r,g,b)
, BY = b− min(r,g)

max(r,g,b)
(1)

For each feature map, we extract its SH coef-
ficients consisting of L2 values in L bands. In the
equirectangular representation of the 360°videos,
we assume that each feature fi, j at the coordi-
nate (i, j),0 ≤ i < N,0 ≤ j < M represents the
mean value f (θi+0.5,φ j+0.5) at the solid angle
(θi+0.5,φ j+0.5), where θi and φ j represent equally-
spaced spherical coordinates. Therefore, for the
mth element of a specific band l, we evaluate the
SH coefficients of the feature map f as:

cm
l (θ ,φ) =

∫
(θ ,φ)∈S

f (θ ,φ) ·Y m
l (θ ,φ)sinθ dθ dφ

=
2π

M

N

∑
i=1

M

∑
j=1

fi, j ·Y m
l (θi+0.5,φ j+0.5) |cosθi+1− cosθi|

(2)
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Figure 3. The reconstructed images using the first 15
frequency bands of spherical harmonics coefficients
extracted from the video frame.

Let

Hi, j =
2π

M
Y m

l (θi+0.5,φ j+0.5) |cosθi+1− cosθi| (3)

we have

cm
l (θ ,φ) =

N

∑
i=1

M

∑
j=1

fi, j ·Hi, j (4)

Hence, for a given dimension of the input
frames, we can precompute the terms H(i, j) and
store them in a lookup table. The integration of the
SH coefficients is then reduced to a conventional
prefix sum problem.

Implementation Details
On the CPU-driven pipeline, we use OpenMP

to accelerate the evaluation of SH coefficients with
12 threads. On the GPU-driven pipeline, we take
advantage of the Blelloch Scan algorithm [13] with
CUDA to efficiently aggregate the SH coefficients
with 2048 kernels on an NVIDIA GTX 1080. The
Blelloch Scan algorithm computes the cumulative
sum in O(logN) for N numbers. Therefore, our
algorithm runs at O(L2 logMN) for L2 coefficients.

Finally, we show the reconstructed image f ′

with the 1-15 frequency bands of SH coefficients
with regular RGB color maps in Figure 3.

Note that the low-band SH coefficients capture
the background information, such as sky and
mountains, while the high-band SH coefficients
capture the details, such as parachuters.

Spherical Spectral Residual Model
Inspired by the spectral residual approach [9],

we define spherical spectral residuals (SSR) as
the accumulation of the SH coefficients between
a low frequency band and a high frequency band.
This model reveals the multi-scale saliency maps
in the spherical spectral domain and reduces the
computational cost by discarding the low bands
of SH coefficients.

Spherical Spectral Residual Approach
As shown in Figure 3, SH frequency bands can

be used to compute the contrast directly across
multiple scales in the frequency space. We define
the spherical spectral residual (SSR) as the sum
of the frequency bands between P and Q:

R(θ ,φ) =
Q

∑
l=P+1

l

∑
m=−l

cm
l ·Y m

l (θ ,φ) (5)

Here, Y m
l (φ ,θ) are pre-computed associated

Legendre polynomials in the preprocessing stage.
The SSR represents the salient part of the scene
in the spectral domain and serves as a compressed
representation using spherical harmonics.

For better visual effects, we square the spectral
residual to reduce estimation errors and smooth
the spherical saliency maps using a Gaussian:

S (θ ,φ) =G(σ)∗ [R(θ ,φ)]2 (6)

where G(σ) is a Gaussian filter with standard
deviation σ (we empirically take σ = 5).

We show the SSR results of the intensity
channel with all pairs of the lower band P and the
higher band Q in Figure 4. As P increases, the
low-frequency information such as the sky and
mountains are filtered out. The SSR results within
and close to the orange bounding box reveal the
salient objects, such as the two people.

Temporal Saliency
In addition to intensity and color features, we

further extract temporal saliency in the spherical
harmonics domain.

For the SH coefficients extracted from the
three feature maps, we maintain two sliding
temporal windows to estimate temporal contrast.
The smaller window w0 stores the more recent SH
coefficients from the feature maps, and the larger
window w1 stores the SH coefficients over a longer
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Figure 4. The spectral residual maps between different frequency bands of spherical harmonics. The number
along the horizontal axis indicates the high band Q, while the vertical axis indicates the low band P. Note that
the saliency maps within or close to the orange box successfully detect the two people in the frame (lower left).

term. For each frame, we calculate the estimated
SH coefficients c̄m

l , ¯̄cm
l from both windows, using

two probability density functions from the Gaus-
sian distribution (|w0|= 5, |w1|= 25,σ = 7.0). We
use a formulation similar to the spatial saliency
to measure the spherical spectral residual between
two temporal windows:

R(Ftemporal,θ ,φ) =

∣∣∣∣∣ Q

∑
l=P+1

l

∑
m=−l

( ¯̄cm
l (θ ,φ)− c̄m

l (θ ,φ)) ·Y m
l (θ ,φ)

∣∣∣∣∣
(7)

We again apply Equation 6 to compute the
smoothed temporal saliency maps.

Saliency Maps with Nonlinear Normalization
Following Itti et al. [5], we apply the non-

linear normalization operator N (·) to all six
saliency maps: intensity, red-green, and blue-
yellow contrasts, both statically and temporally.
This operator globally promotes maps which
contain a few peak responses and suppresses maps
with a large number of peaks. After the non-linear
normalization, we linearly combine all saliency
maps into the final saliency map.

S =
1
N

N⊕
i=1

N (S(Fi)) (8)

Empirically, we choose Q = 15,P = 7. The
final composed result is shown at the bottom left
corner in Figure 4, as well as in the accompanying
video: https://youtu.be/jwv5hjlg-MI.

Comparison Between Itti et al. and SSR Model
As shown in Figure 6, our SSR model is

visually better than the Itti et al. model. In addition,
our experimental results below compare the classic
Itti et al. model and our model.

We use six videos from the Insta3602 and
the 360Rize3. The video resolutions vary from
1920×1080 to 7680×3840 pixels.

Resolution
Average Timing Per Frame

Itti et al. (CPU) SSR (CPU) SSR (GPU)

1920x1080 104.46 ms 21.34 ms 10.81 ms

4096x2048 314.94 ms 48.18 ms 13.20 ms

7680x3840 934.26 ms 69.53 ms 26.58 ms

Table 2. Timing comparison between the Itti et al. model
and our spherical spectral residual (SSR) model.

Our results are obtained on a workstation with
an NVIDIA GTX 1080 and an Intel Xeon E5-2667

2Insta360: https://www.insta360.com
3360 Rize: http://www.360rize.com

May/June 2021 5

https://youtu.be/jwv5hjlg-MI
https://www.insta360.com
http://www.360rize.com


Department Head

Itti et al’s Model Our SSR Model

Parachute
(1920 × 1080)

Office
(4096 × 2048)

Spring
Outdoor

(7680 × 3840)

Input

Night
(7680 × 3840)

Winter
Outdoor

(4096 × 2048)

Grassland
(1920 × 1080)

Figure 5. The visual comparison between the Itti et al. model and our SSR model. Note that while the results
are visually similar, our SSR model are 5× to 13× faster than the Itti et al. model.

2.90GHz CPU with 32 GB RAM. Both the Itti et
al. model and the SSR model are implemented in
C++ and OpenCV. The GPU version of the SSR
model is developed using CUDA 8.0. We measure
the average timing of saliency computation, as
well as the visual results between the Itti et al.
model and our SSR model. Note that the timings
do not include the uploading time for each frame
from system memory to GPU memory. We expect
our algorithms would map well to products such
as NVIDIA DrivePX4 in which videos are directly
loaded onto the GPU memory.

We measure the average computational cost
of the initial 600 frames across three resolutions:

4https://NVIDIA.com/en-us/self-driving-cars/drive-px

1920× 1080, 4096× 2048, and 7680× 3840, as
shown in Table 2. All frames are preloaded into the
CPU memory to eliminate the I/O overhead. Both
the CPU and GPU versions of our SSR model
outperform the classic Itti et al. model, with the
speedups ranging from 4.8× to 13.4×, depending
on various resolutions. We show example input
and the output from both models in Figure 5.

Saliency-guided Virtual Cinematography
We now present a saliency-guided virtual

cinematography system for navigating 360° videos.
Inspired by prior art on camera path selection and
interpolation [4], [14], we formulate a spatiotem-
poral model to ensure large saliency coverage
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The Input Frame

Source

Horizontal
Clipping

Spherical
Rotation

Our SSR ModelItti et al’s Model

Figure 6. Comparison between Itti et al. model and our SSR model with horizontal translation and spherical
rotation in the 360° video frame. White circles indicate the false negative result from Saliency Toolbox and
orange ones indicate false positive result from Saliency Toolbox. Meanwhile, the results from our SSR model
remain consistent, regardless of horizontal clipping and spherical rotation.

while reducing the camera movement jitter.
We compute our saliency maps by linearly

combining the saliency maps based on intensity,
color, and motion, and then performing a non-
linear normalization, as explained in the previous
section. However, for 360° videos, the most salient
objects may vary from frame to frame, due to the
varying occlusions, colors, and self-movement. As
a result, an approach that relies on just tracking
the most salient objects may incur rapid motion
of the virtual camera, and worse still, may induce
motion sickness in virtual reality. Hence, we
devise a spatiotemporal optimization model of the
virtual camera’s discrete control points and further
employ a spline interpolation amongst the control
points to achieve smooth camera navigation.

Optimization of the Camera’s Control Points
To estimate the virtual camera’s control points,

we formulate an energy function E(C) in terms of
camera location C = (θ ,φ). The energy function

E(C) = λE saliency(C)+E temporal(C) (9)

consists of a saliency coverage term E saliency and
a temporal motion term E temporal, thus taking both
saliency coverage and temporal smoothness into
consideration. Empirically, we assign λ = 2.

Saliency Coverage Term This spatial term
E saliency penalizes the coverage of the saliency

values beyond the field of view. As for a specific
virtual camera location C, this term would be
written as:

E saliency(C) =
∑θ ,φ S(θ ,φ) ·O(C,θ ,φ)

∑θ ,φ S(θ ,φ)
(10)

where O(C,φ ,θ) indicates whether an arbi-
trary spherical point (φ ,θ) is observed by the
virtual camera centered at the location Ci:

O(C,θ ,φ) =

{
1 , (θ ,φ) is observed by camera at C

0 , otherwise
(11)

Thus, E saliency (C) measures the coverage of
the saliency values beyond the field of view of
the virtual camera centered at C. To reduce the
computation, we compute the saliency coverage
term over 2048 points (θ ,φ), that are uniformly
distributed over the sphere.

Temporal Motion Term For the ith frame
in the sequence of the discrete control points,
E temporal (C) measures the temporal motion of the
virtual camera as follows:

E temporal (C) =

{
‖Ci−1,Ci‖2 , i≥ 1

0 , i = 0
(12)

The Optimization Process Based on this
spatiotemporal model, we evaluate the energy func-
tions over 32×64 pairs of discrete (θ ,φ). This
process is highly parallel, and can be efficiently
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Figure 7. The interpolation amongst the global max-
imas of the saliency maps in the spherical space.
The yellow dots show the discrete optimal locations
using the energy function, and the blue dots show the
interpolation using the spherical spline curve.

implemented on the GPU. For each frame, we
compute the optimal camera point as follows:

C̊ = argmin
C

E(C) (13)

In this way, we extract a sub-sequence of
discrete spherical coordinates Seq = {C̊i|C̊i =
(φi,θi)} of the optimal camera location in the
saliency maps every K frames, K = 5 in our
examples. Since these locations are discrete and
sampled at a lower frame rate, we further perform
spline interpolation with C2 continuity.

Interpolation of Quaternions
To interpolate between 3D rotations of the

surrounding sphere over time through our calcu-
lated salient positions, we convert the spherical
coordinates to quaternions:

Q(θ ,φ) = (0,sin(θ)cos(φ) ,sin(θ)sin(φ) ,cos(θ)) (14)

We then use spherical spline curves with C2

continuity to compute the smooth trajectory of the
camera cruise path over the quaternions. Figure 7
shows the locations of the global maximas, as well
as the interpolated spline path over the sphere.
An alternative method is to use spherical linear
interpolation5 for the interpolation.

Evaluation of Virtual Cinematography Models
We compare our method, denoted as Spa-

tioTemporal Model (STO) with a MaxCoverage
model which determines the camera position for
the maximal coverage of the saliency map. We

5https://boost.org/doc/libs/1 67 0/libs/qvm/doc/slerp.html
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Figure 8. Quantitative comparison between the Max-
Coverage model and the SpatioTemporal Optimiza-
tion (STO) model. Compared with the MaxCoverage
model, the STO model significantly reduces the tem-
poral jitters.

evaluate the temporal motion terms for the same
video sequence and plot the data in Figure 8.

From the quantitative evaluation, as well as the
accompanying video, we have validated that the
STO model reduces the temporal jittering of the
camera motion compared to MaxCoverage model
for virtual cinematography in 360° videos.

Future Directions
With new datasets of stereoscopic 360° videos

and eye-tracking data, one may extend our model
and optimize the foveated streaming [1] and auto-
matic camera navigation. We believe our spherical
representation of saliency maps will inspire more
research to think out of the rectilinear space. We
envision our techniques will be widely be used
for live streaming of events, video surveillance of
public areas [11], as well as templates for directing
the camera path for immersive storytelling. Future
research may explore how to naturally place 3D
objects with spherical harmonics irradiance in
360° videos, how to employ spherical harmonics
for foveated rendering in 360° videos, and the po-
tential of compressing and streaming 360° videos
with spherical harmonics.

Ruofei Du is currently a Senior Research Scien-
tist at Google. Contact him at me@duruofei.com.

Amitabh Varshney is a Dean of the College of
Computer, Mathematical and Natural Sciences,
and a Professor of Computer Science at the
University of Maryland at College Park. Contact
him at varshney@cs.umd.edu.
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