
Deliberately Planning and Acting for Angry Birds with Refinement Methods

Ruofei Du, Zebao Gao, Zheng Xu∗

University of Maryland, College Park
Computer Science Department

{ruofei, gaozebao, xuzh}@cs.umd.edu

Abstract
Angry Birds has been a popular game through-
out the world since 2009. The goal of the game
is to destroy all the pigs and as many obsta-
cles as possible using a limited number of birds.
Since the game environment is subject to change
tremendously after each shot, a deterministic plan-
ning model is very likely to fail. In this paper,
we integrate deliberately planning and acting for
Angry Birds with refinement methods. Specifi-
cally, we design a refinement acting engine (RAE)
based on ARP-interleave with Sequential Refine-
ment Planning Engine (SeRPE). In addition, we
implement greedy algorithm, Depth First Forward
Search (DFFS) andA∗ algorithm to perform the ac-
tor’s deliberation functions. Eventually, we eval-
uate our agent to solve the web version of Angry
Birds in Chrome using the client-server platform
provided by the IJCAI 2015 AI Birds Competition.
In our experiments, we find out that our agent us-
ing SeRPE with A∗ algorithm greatly outperforms
the agent using greedy algorithm or forward search
without SeRPE. In this way, we prove the signifi-
cance of refinement methods for planning in prac-
tice. Please see the supplementary video https:
//youtu.be/u7XJ0g6d9po for more results.

1 Introduction
Angry Birds1 has attracted over 200 million players all over
the world since 2009. The task for the player is to shoot birds
with different properties from a slingshot at a structure that
houses pigs and to destroy all the pigs. [AI birds, 2015] The
structure can be very complicated and can involve a number
of different object categories with different properties, such
as wood, ice and stone, as shown in Fig. 1. After each shot,
the entire game environment is subject to tremendous change.
Consequently, for human players, this game is very challeng-
ing for rookies to achieve a very high score while for auto-
matic AI agent, a deterministic planning model is very likely
to fail.

∗Sorted by alphabetical order, with equal contribution
1https://www.angrybirds.com/

Figure 1: The example image shows the complicated struc-
ture involving different objects with different properties. The
bounding boxes are extracted by basic code provided.

In this project, we develop a deliberately planning and act-
ing system that is able to successfully play the game au-
tonomously and without human intervention. (See video at
https://youtu.be/u7XJ0g6d9po). This may require
analyzing the structure of the objects and to infer how to shoot
the birds in order to destroy the pigs and to score most points
by causing more damage. In order to simplify the problem
and focus on the AI planning algorithms, we use the basic
game playing software provided by the IJCAI competition
organizer.2 The basic framework provides a computer vision
component to analyze the game and identifies the location of
all the objects (observor) and an acting component that actu-
ally shoot birds in the browser (actor).

Based on the framework, we integrate both planning and
acting with refinement methods using Sequential Refinement
Planning Engine (SeRPE). Finally, we evaluate our agent to
solve the web version of Angry Birds in Chrome.3 Moreover,
we design the greedy algorithm, Depth First Forward Search
(DFFS) and A∗ algorithm to perform the actor’s deliberation
functions. Our contribution are as follows:

1. design and implementation of greedy algorithm, DFFS
and A∗ algorithm for Angry Birds

2. design a refinement acting engine (RAE) based on ARP-
interleave with Sequential Refinement Planning Engine
(SeRPE) for Angry Birds

3. evaluation and comparison amongst different algorithms
with or without SeRPE

2http://ijcai-15.org/index.php/
angry-birds-competition

3http://chrome.angrybirds.com

mailto:ruofei@cs.umd.edu
mailto:gaozebao@cs.umd.edu
mailto:xuzh@cs.umd.edu
https://youtu.be/u7XJ0g6d9po
https://youtu.be/u7XJ0g6d9po
https://aibirds.org/
https://www.angrybirds.com/
https://youtu.be/u7XJ0g6d9po
http://ijcai-15.org/index.php/angry-birds-competition
http://ijcai-15.org/index.php/angry-birds-competition
http://chrome.angrybirds.com

4. illustration of the significance of refinement methods in
practice and lessons learnt from planning and acting for
Angry Birds

2 Background and Related Work
In this section, we introduce the background of Angry Bird,
the IJCAI Angry Bird competition and related work regarding
the problem.

2.1 Angry Bird
The game Angry Birds is popular throughout the world due
to its simple rules and the behaviour of the game environment
reflecting the laws of physics. The main aim in each level is,
given a certain number of birds, to kill all the pigs, doing as
much damage to the surrounding objects as possible. Usually
the pigs are not exposed to direct shots - in these situations
one first has to get through sheltering structures protecting
the pig.

2.2 Angry Birds AI Competition
This competition has been held through 2012 to 2014. Each
year in IJCAI Symposium on AI in Angry Birds, researchers
present their original scientific work related to computer vi-
sion, heuristic search, knowledge representation and reason-
ing, AI planning, and machine learning in the context of An-
gry Birds. However, the rules differ from year to year. The
latest software is developed by [Ge et al., 2014]. This com-
munity also provides an online forum4. We can find accepted
papers in year 2013 [AI birds, 2013] and year 2014 [AI birds,
2014] as references. There exists a framework for competi-
tors to focus on the AI planning part of the agent. The frame-
work includes the following components:

1. a computer vision component that can analyze a video
game frame and identifies the location, category and
bounding box of all relevant

2. a trajectory component that calculates trajectories of
birds and computes where to shoot from in order to hit a
given location

3. a game playing component that executes actions and
captures screen shots

2.3 AI Planning for Angry Birds
In 2013, [Ge and Renz, 2013] present the first version of
AIBirds framework as well as their agent in IJCAI. They de-
velop and analyze a qualitative spatial representation for Gen-
eral Solid Rectangles (GSR), which assists the agent to build
relations between GSR thus estimating the statbility of the
physical structures in the game of Angry Birds. [Ferreira
et al., 2013] present an automatic framework to play An-
gry Birds using concepts of qualitative spatial representation,
utility function and decision making under uncertainty. [Cal-
imeri et al., 2013] models its internal knowledge of the game
by means of an Answer Set Programming (ASP) knowledge
base [Shah, 2004]. [Zhang and Renz, 2014] propose to com-
pute a heuristic value for each block that corresponds to

4http://forum.aibirds.org/

how useful it is to hit that block. The heuristic value is de-
rived from a qualitative spatial calculus for representing and
analysing the structure. [Wa, 2014] formulate the problem
using qualitative representation for touch, positional direc-
tion, shelters and physical rules. [Polceanu, 2014] propose
a generic framework which allows an agent to reason and
perform actions using multiple simulations of automatically
created or externally inputted models of the perceived envi-
ronment.

2.4 Machine Learning for Angry Birds
[Narayan-chen et al., 2013] present their agent by using
Weighted Majority algorithm and Naive Bayesian Networks
to learn how to judge possible shots. [Jutzeler et al., 2013]
focus on a particular issue in AI Birds competition: dif-
ferent strategies are suitable for different levels. There are
trade-off between different strategies which can be models as
Multi-armed Bandit (MAB) in machine learning. Their pro-
posed agent tries to select the best strategy for the next level.
[Tziortziotis et al., 2014] propose the assumption that each
type of object material and bird pair has its own Bayesian lin-
ear regression model. In this way, they design a multi-model
regression framework that simultaneously calculates the con-
ditional expectations of several objects and makes a target de-
cision through an ensemble of regression models.

3 Angry Birds Platform
We utilize the Basic Game Playing Software [Ge et al., 2014]
as our platform. The platform is built on Java and the game is
executing in Chrome. The structure of the platform is shown
in Fig. 2.

Figure 2: The executing platform for the Angry Birds Game:
the server-client architecture

The main focus is to design the client of the system: the
Automatic Agent. The AI Agent could use the built-in Vi-
sion Module to analyze game scenarios and use the trajectory

https://aibirds.org/
https://aibirds.org/
http://forum.aibirds.org/

module (Actor) to perform shots. Server Proxy receives com-
mand messages from agents and send them to server, as well
as provides feedback from the Chrome Window after the ex-
ecution of the action. The Game Server communicates with
Angry Birds Extension in Chrome through Extension Mes-
senger. The Angry Birds Extension offers functionality of
capturing screenshots and executing actions.

The Vision Module contains image segmentation compo-
nents which could output a list of the minimum bounding
rectangles (MBR) of essential objects, which takes about 100
ms for a typical scenario, an example image is shown in
Fig. 1. The Actor Module estimates the trajectory that a bird
will follow given a particular release point.

4 Problem Formalism
The angry bird task involves both planning and acting. Our
approach is mainly based on the refinement methods from
Chapter 3 of [Ghallab et al., 2015]. We use the Server-
Client Architecture introduced in Section 3 to command and
execute actions. We use the Vision Module to monitor the
current status in Angry Birds game. We design the Refine-
ment Acting Engine (RAE) based on ARP-interleave, which
replans after each action, and use SeRPE as the simulation
algorithm in each replanning. We will formulate the Angry
Birds game with state variable representation, define com-
mands and tasks, design refinement method and draw the re-
finement tree in the following part this section

4.1 State Variable Representation
We define the state variable representation for Angry Birds.
The objects are

Sling = {sl}
Birds = {b1, b2, · · · , bB}
Pigs = {p1, p2, · · · , pM}
Ices = {i1, i2, · · · , iG}

Woods = {w1, w2, · · · , wW }
Stones = {s1, s2, · · · , sS}

Obstacles = Ices ∪Woods ∪ Stones
Points = {(x, y)|x, y ∈ Integers}
MBRs = {(xi, yi)|xi, yi ∈ Integers, i ∈ {1, 2, 3, 4}}
TNTs = {t1, t2 · · · , tT }
Things = Sling ∪Birds ∪ Pigs ∪Obstacles ∪ TNTs

The following state variables are kept up-to-date by the vision
component of angry birds:

∀obj ∈ Things,exist(obj) ∈ Booleans
∀obj ∈ Things,mbr(obj) ∈MBRs

∀obj ∈ Things,blocked(obj) ∈ Booleans
∀obj1, obj2 ∈ Things,dist(obj1, obj2) ∈ Intergers

exist(obj) indicates whether an object exists. mbr(obj) is the
bound rectangle for an object. blocked(obj) indicates whether
the object can be reached. dist(obj1, obj2) is the distance
between two objects.

4.2 Commands and Tasks
The angry birds platform could execute the following com-
mands:
• findMBR(): perceive all the MBR rectangles of Objects

in the current state.
• estimateLauchPoint(sl, target): estimate the Start Points

used to shoot bird from the Sling and the target Point.
• shot(b, start): shot a bird by pulling it to the start point.
• isReachable(sl, start, target): estimate if the Target Point

is reachable based on the Start Point, or the Target is
blocked by Obstacles.

• getSupporters(obj): get all the objects that suppot the
object

We define the following commands that are executable in
the program:
• getMBR(obj): get the MBR rectangle for an object.
• getHitPoint(obj): get the hit point for an object.
• isBlocked(obj): test whether an object is blocked
• getAllPigs(): perceive all the pigs in the scene
• getAllBirds(): perceive all the birds in the scene
• getCurrentBird(): get the current bird to use
• getTNTs(): get the TNTs in the scene
• getObstacles(obj): get the obstacles for obj
• estimateScoreOfObjs(objs): estimate the score based on

the obstacle objects
We define the following tasks for angry birds:
• destroyAllPigs(): destroy all the pigs
• chooseTarget(): choose the next target to hit
• estimateScore(p): estimate the score of destroying a pig
• destroy(obj): destroy a object (a pig or a TNT)
• destroy(obj, b): destroy a obj (a pig or a TNT) with a

bird
• hit(b, obj): hit an obj with a bird

4.3 Refinement Method
Our main task is to destroy all the pigs. To address the tasks
listed , we define the following methods.

• m-destroyAllPigs(): destroy all pigs in a certain level
• m1-chooseTarget(): choose the TNT as the target of the

highest priority if a TNT exists on the map
• m2-chooseTarget(): choose the pig with the highest ex-

pected score based on the distance and surrounding ob-
stacles of the pig

• m1-selectTarget(): directly select a target based on its
distance to the bird

• m2-selectTarget(): select a target based on the obstacles
on path of the trajectory

• m1-destroyTarget(t): destroy a single target by hitting
the TNT on the map

• m2-destroyTarget(p): destroy a single target by hitting
the pig
• m1-destroyPig(p, b): destroy a pig with a bird
• m1-hit(a, obj): hit directly towards the target point of

the object, ignore the status of the target or whether it is
blocked by obstacles
• m2-hit(a, obj): when the object is blocked, choose to hit

one of the obstacles
• m3-hit(a, obj): instead of hitting directly towards the ob-

ject, choose to hit one of the supporters of the object
• m4-hit(a, obj): choose to hit one of the TNTs to indi-

rectly cause the object to be hit

Refer to Appendix A for details.

4.4 ARP-interleave with SeRPE
We will use ARP-interleave in book Chapter 3.5 to integrate
planning and acting. We use SeRPE in book Chapter 3.4 to
simulate the plan. We test different search method with dif-
ferent heuristic to perform the nondeterministic choice in the
algorithm.

SeRPE (Sequential Refinement Planning Engine) is a re-
finement planning engine in which all of the action models
have deterministic outcome. SeRPE well serve the planning
for a single step in our problem.

The refinement tree for this planning problem is shown in
Figure 3.

The very top level task destoryAllPigs() is implemented in
the method m-destroyAllPigs which further divide the task
into two stps: the first task chooseTarget() which choose the
next target (which can be a pig or a TNT) to destroy, and the
second task destroyTarget() which targets to destroy a single
target.

We provide two methods that implement the task choose-
Target(). Note that whenever there are multiple implemen-
tations, different heuristic functions will be applied to deter-
ministically choose one implementation. More details about
this will be discussed in later sections.

The first implementation m1-chooseTarget() will try to find
the TNT on the map. It uses two actions getTNTs() and is-
Reachable() to determine if there exisits any reachable TNT
on the map. As a result, the first reachable TNT will be re-
turned. Otherwise this method will return failure.

The second implementation m2-chooseTarget() will return
the pigs on the map that has the maximum estimated scores.
Inside the method, three actions will be applied: getAllPigs()
which find all pigs on the map; isBlocked() which determined
whether this pig is blocked; and selectTarget() which select
the target based on two implementations based on the dis-
tance of target or the obstacles on the path of the trajectory.

Two different implementations for the task destroyTarget()
is also provided in our refinement tree.

The first implementation m1-destroyTarget(t) will focus on
destroying a TNT. Given that there is a unblocked TNT on
the map, the task hit(b, t) can directly calculate the trajectory
angle and return a point start where the bird should be pulled
to. The reason behind this design is that TNTs may destroy a
lot of blocks and pigs when explore.

To estimate the trajectory angle θ of the shoot, we exploit
the trajectory function provided by [Ge and Renz, 2013]:

θ{1,2} = arctan(
v2 ±

√
v4 − g(gx2 + 2 ∗ y ∗ v2)

gx
) (1)

where the coordinates (x, y) are the target position relative
to the sling and the gravity constant variable g = 1.0, the
velocity v is a constant velocity given by the slingshot.

Figure 4: Example of Two Possible Trajectory Angles Aim-
ing at the Same Target Point

After calculating the trajectory angle, the shoot(b, start)
action will shoot the bird.

The second implementation m2-destroyTarget(p) will fo-
cus on destroying a pig. This method will be applied when
there are remaining pigs whereas no more reachable TNTs
on the map. Further, we provide several different implemen-
tations for the task hit(b, p) which uses a bird b to hit a target
pig p.

The trajectory equation shown above is able to return mul-
tiple different angles with different hights given only two
fixed points. Figure 4 just shows an example where two dif-
ferent trajectories that hit the same point.

Based on this fact, we designed several different methods
for the task hit(b, p). In the first implementation, we sim-
ply select any trajectory angle that will pass the position of
the target p. This can be finished by three actions: estimat-
edLaunchPoint(b, p) which will return a start point to pull
the bird b to, and shoot(b, start) will shot the bird b by re-
leasing it at the point start. This approach is the simplest but
may not work well because it does not take into consideration
the affects of obstacles. In the second implementation, we
will choose to hit the obstacles when the target p is blocked.
In the third implementation, we will firstly execute an action
getSupporters(b) which will get the supporters of the target;
then the following actions estimatedLaunchPoint(b, p) and
shoot(b, start) will calculate angle and shoot at a supporter.

Integrating Refinement Planning and Acting
The refinement methods and refinement tree shown above de-
scribes how we make plan for one single shot. More impor-
tantly, we are adopting the ARP-interleave framework which
combines planning and acting and recalculates the plan for
the next step each time a step is finished. The current state
of the actual world after the previous step will be used thus
resulting in a safer future plan.

Figure 3: Refinement Tree of Planning for Angry Birds Puzzles

One of the biggest challenges in Angry Birds is that the
world is seldom predictable. Even a well-trained player can-
not tell the exact states of all objects after a single shot. For
example, in some shoots, the bird is able to hit precisely the
selected coordinate, but in other cases, the bird had a com-
pletely different trajectory and hit another objects. As a result,
each action may trigger the following concrete consequences
introduced by [Ghallab et al., 2015]:

1. Actions failures A shot may not accomplish the goal of
destroying a targeted pig.

2. Unexpected side effects of actions A shot may chang-
ing the future planning state by destroying other pigs.

3. Exogenous events A shot may put the stage into an un-
solvable state like surrounding a pig with irons.

Without a precise predication function, a purely planning
model or a SeRPE engine will not work without combining
planning and acting. And specifically in our problem, the
predication function for each step will be difficult and the ac-
tual current state of the world will be crucially important for
the following steps. Taking these factors into consideration,
the ARP-interleave model will work perfectly for our prob-
lem.

To be specific, our ARP-interleave framework will do the
followings:

1. Before each step, it will generate a plan based on the
SeRPE refinement tree. For tasks with multiple imple-
mentations, it will nondeterministically choose a imple-
mentation that will get the best score best on a certain
type of heuristic function. All tried methods for the cur-
rent subgoal will be recorded by the system.

2. After each step, the system will check the current status
of the world. It will check whether the previous subgoal
was achieved by the previous step. Also, it will update
the status of all the objects (like pigs, stones, woods,
etc.) according to their latest actual state.

3. If the current step fails to achieve the current goal, the
planner will try to use the remaining methods that are
feasible in current state. If no such method can be found,
the current subgoal will be skipped for the moment.

4. If the current step succeed. The system will go on with
the next subgoal.

5. Each time the system will check the latest status of the
world to determine whether a previously skipped goal
has a feasible refinement tree. If it is true, a new plan
will be generated for the previously skipped subgoal.

have several advantages:

1. It models the problem more accurately.

2. Plan generated by this system is more practical because
the actual status of the world are always taken into con-
sideration.

3. A better decision can be made about choosing the next
subgoal.

4.5 Search methods for nondeterministic choice in
SeRPE

In this section, we introduce our search method to plan ac-
tions in the simulation algorithm SeRPE. We adopt three for-
ward search methods in our implementation: greedy search,
depth-first search and A* search. In the remainder of the
paper, we will call the SeRPE algorithm with those forward
search methods as SeRPE-Greedy, SeRPE-DFFS and SeRPE-
A*, respectively. We will discuss how to apply those methods
in the angry birds game in details as follows.

SeRPE-Greedy
We discuss how to implement SeRPE with the greedy search
method. Our greedy search is based on two heuristics

1. always choose a pig as target
2. choose the pig that is closest to the sling

Heuristic 1 force the AI to destroy all pigs to accomplish the
current level of the game. Heuristic 2 is based on the observa-
tion that when hitting the closest pig, there is high probability
to cause the other pigs to be destroyed, and hence accomplish
the current level of the game. Each time SeRPE-Greedy is
called, it will return a plan that hits the pigs one by one in the
order according to the distance. In our planning and acting
framework, simulation algorithm is called after each action.
When we use SeRPE-Greedy, a plan that hits the existing pigs
one by one in the order according to the distance of pigs and
sling is returned.

SeRPE-DFFS
We introduce SeRPE-DFFS for angry birds, which utilize the
depth first search method while generating plans with SeRPE.
The depth-first search uses one heuristic: always choose a pig
as target. One advantage of depth first search comparing with
greedy search is that DFFS guarantees to find a solution if
it exists. This is guaranteed by backtracks in DFFS. DFFS
randomly choose each applicable action to form a planning
sequence. If the sequence is not a feasible solution, then the
algorithm backtracks to the previous state and choose another
action. In our SeRPE-DFFS, DFFS is used to choose pigs to
hit. Each time SeRPE-DFFS is called, it will return a plan the
hits the existing pigs in a random order.

SeRPE-A*
We also investigate A* search method to implement SeRPE,
which we name as SeRPE-A*. A* search surpass greedy
search and DFS when the state space is not too large, as A*
guarantees to return the optimal solution. The key problem
in applying A* search method is to design the heuristic func-
tion. In our SeRPE-A*, the cost of each action is evaluated by
the predictable consequences of the action. We list the scores
of objects in angry bird in Tab. 4.5. Our heuristic function is
based on those scores. We define the cost of hit action as:

cost(hit(b, obj)) = −score(obj) (2)

. where obj refers to And cost of all the other actions as 0.
When SeRPE-A* is called, a planned action with the lowest
cost (highest predictable score) will be returned. As TNT has
the highest score in our design, the first action will have high
probability to target on hitting the a TNT.

The heuristic function used to calculate the score. The
scores for destroying each types of different objects are
shown in Table 1.

Table 1: Basic Score Metrics
Event Score
TNT 10000

Bird left 10000
Pig destroy 5000
Destroy sth 500
Damage sth 50

Moreover, we design an extra feature while applying
SeRPE-A* in the planning and acting framework. Each
time SeRPE-A* is called, we will estimate the final score by
adding up the predictable score returned by SeRPE-A* and
the achieved score the AI agent got by performing previous
actions. If the estimated score is less than the scores achieved
by performing our previous plans, we will stop the current
ARP-interleave procedure and restart the whole refinement
process by restarting the game in the current level.

5 Implementation
5.1 Greedy Algorithm
One naive approach to this problem is a purely greedy algo-
rithm. For each bird b ∈ Birds, the baseline planner aim at
pigs one by one, without considering any other obstacles.

In this approach, a planning domain is constructed with
several assumptions about the plan: (1) a naive predication
function will assume each action being executed success-
fully without impacting states of obstacles; and (2) a heuristic
function will be used to measure the cost from each state to
the sub-goal using the score of achieving that sub-goal. Based
on the planning domain constructed, a greedy algorithm will
try actions in decreasing order of the possible scores.

This algorithm is fast and easy to implement. However, the
drawbacks for this approach are obvious. Firstly, it doe not
guarantee to return a solution. More importantly the predica-
tion function may be unrealistic and without acting and plan-
ning, the state set of the planning domain will be different
from actual states.

5.2 Forward State-Space Search
Since greedy algorithm does not guarantee to return a solu-
tion for the problem, we also evaluate the performance of the
Depth-First Forward Search (DFFS). However, given such a
huge search space (each bird has 360 possible angles to be
shot) and the uncertainty of the game engine, the DFFS also
does not guarantee a solution given a fixed amount of time.

5.3 A*
DFFS will suffer from time cost and it will have to enumer-
ate over all feasible plan to find the optimal plan in the worst
case. Whereas A* is much better in performance when espe-
cially in the context of this problem when time is limited. A*
guarantees to return the optimal solution when there is one. It
requires more space complexity but will work well when the
plan space is not big.

6 Experiments
We have carried out a number of experiments to evaluate the
performances with or without SeRPE using different search
algorithms.

6.1 Datasets and constrains
We adopt the first chapter Poached Egges of the chrome ver-
sion of Angry Birds game. The time limitation is set to
10 minutes for each level. We evaluate the highest score
achieved by different algorithms as well as average time
needed to pass a level. Table 2 shows some basic statistics
about each level, including number of birds, pigs, woods,
stones, ices and total number of obstacles. The experiment
was conducted in Google Chrome (Version 40.0.2214.115
m) with Nvidia Quadro K6000, Intel Xeon CPU E5-2667
2.90GHz and 36GB RAM in Windows 8 workstation.

Table 2: Basic Statistics of Each Level
Level Birds Pigs Woods Stones Ices Tot Obstacles

1 3 1 12 1 2 15
2 5 4 4 4 0 8
3 4 2 4 3 0 7
4 4 1 5 3 5 13
5 4 5 8 13 11 32
6 4 2 6 6 6 18
7 4 3 7 4 18 29
8 4 4 2 5 2 9
9 4 3 23 6 4 33

6.2 Experimental Results
We measure 6 methods in the first 10 levels of Angry Bird
in aspect of highest scores obtained and average time cost to
pass a level.

6.3 Highest Scores
We firstly measure the highest scores achieved by different
methods. The results are shown in Table 3 and Figure 5. The
results show that SeRPE-Greedy, SeRPE-DFFS and SeRPE-
A* significantly outperform their counter parts which are
simply planed with Greedy, DFFS or A*. In specific, SeRPE-
A* works the best in almost all levels.

6.4 Average Time Cost
For all 6 methods, we also measure the average time cost
for each level. We set the maximum time limit 600000 mil-
liseconds (10 minutes) and will terminate the process at this
limit. As shown in Table 4 and Figure 6, methods incorpo-
rating SeRPE engines outperform their counterparts in most
cases. The difference at the beginning levels are quite small,
but grows dramatically at the last a few levels. Just as we
have expected, SeRPE-A* outperform all other methods in
most levels.

6.5 Discussion
In this section, we discuss lessons that learnt from the exper-
imental results.

Table 3: Highest Score for Each Level
1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9

Greedy 29290 33790 31660 10990 40700 24000 15640 11480 9600
DFFS 29330 52240 34380 34380 41970 34380 34380 27150 20590

A* 30130 52500 41910 29770 61110 63770 32070 34380 39640
SeRPE-Greedy 29290 33840 33490 25670 56960 33620 20060 11780 18510

SeRPE-DFFS 30470 52390 40870 40700 62030 39880 31910 28480 39700
SeRPE-A* 32460 61500 41960 42530 64440 63770 46280 46720 42380

Table 4: Average Time Cost to Pass Each Level (ms)
1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9

Greedy 50004 76937 58662 73220 59974 600000 600000 600000 600000
DFFS 43114 93699 57586 133267 113281 363596 600000 600000 600000

A* 42099 86056 58140 77596 161638 185486 168320 193087 187021
SeRPE-Greedy 49604 56412 58499 74077 59637 94921 151850 600000 600000

SeRPE-DFFS 37507 54632 48246 114650 108311 168320 259924 600000 600000
SeRPE-A* 34371 46056 34383 71690 49652 75946 84274 82887 93856

0
20

00
0

60
00

0
10

00
00

Level

S
oc

re

1 2 3 4 5 6 7 8 9

Greedy
DFFS
A*
SeRPE−Greedy
SeRPE−DFFS
SeRPE−A*

Figure 5: The Highest Scores for Each Level

0e
+

00
4e

+
05

8e
+

05

Level

T
im

e
C

os
t (

m
s)

1 2 3 4 5 6 7 8 9

Greedy
DFFS
A*
SeRPE−Greedy
SeRPE−DFFS
SeRPE−A*

Figure 6: Average Time Cost to Pass Each Level

In a deterministic model where the planning is 100% ac-
curate, an automatic agent does not necessarily need refine-
ments methods to modify the initial plan. An offline plan
can ideally solve the problem. Nevertheless, in a real-world
problem like Angry Birds, the deterministic model even with
A∗ search cannot guarantee a solution. This is caused by the
following reasons:

1. Inaccurate Simulation It is a challenging task to derive
an exact model of a physical world. The knowledge base
of the physical world is built upon the prior exploration
with trials and errors. Even in a virtual world like Angry
Birds, it is almost impossible to model the world without
reading its source code.

2. Changes in Time In practical scenarios like Angry
Birds, the global states of any object may be subject to
change form time to time. For example, it is very hard to
know whether the scene is static or not after a shot. The
structure may be unstable and moving in a very slow
pace. As a result, the subtle changes in the global states
may lead to failure of the current plan.

3. Erroneous Actions As for human beings, it is hard to
perform an action such as move left hand 5 centimeters
forward exactly. Similarly, for a video game like Angry
Birds that involves human interactions, the acting engine
hardly points to the perfect position in pixel-level. Con-
sequently, the actor may produce different states than the
planner predicted.

Hence, deliberately planning and acting with refinement
methods outperforms the deterministic models. Though only
partial plan is conducted each time, the engine itself observes
the current state and makes changes to future plans. For some
other cases, it may be impossible to generate a complete plan
in limited time. Then partial plan can be generated and per-
formed first. With A∗ algorithm, whenever the current state
cannot exceed the highest score achieved previously using the
maximal heuristic function value, the game can be restarted
to save time.

7 Conclusion
In this paper, we present a deliberately planning and acting
system with refinement methods for the popular Angry Birds
video game. We design a RAE based on ARP-interleave with
SeRPE. Some algorithms, greedy, DFFS and A* are incorpo-
rated to search for plans. Our experimental results show that
ARP-interleave outperforms their counterparts which purely
rely on the search algorithms.

Acknowledgments
The authors would like to thank Prof. Dana S. Nau and Dr.
Vikas Shivashankar for teaching CMSC 722 and advising the
team for this paper.

References
[Calimeri et al., 2013] Francesco Calimeri, Michael Fink,

Stefano Germano, Giovambattista Ianni, Christoph Redl,
and Anton Wimmer. AngryHEX: An Artificial Player for

Angry Birds Based on Declarative Knowledge Bases. In
Proceedings of the Workshop Popularize Artificial Intelli-
gence co-located with the 13th Conference of the Italian
Association for Artificial Intelligence (AI*IA 2013), pages
29–35, 2013.

[Ferreira et al., 2013] Leonardo Anjoletto Ferreira, Guil-
herme Alberto, Wachs Lopes, Paulo Eduardo Santos, Uni-
versidade Metodista, De São Paulo, São Bernardo, São
Paulo, São Bernardo, and São Paulo. Combining Qualita-
tive Spatial Representation Utility Function and Decision
Making Under Uncertainty on the Angry Birds Domain.
In International Joint Conference on Artificial Intelligence
(IJCAI), 2013.

[Ge and Renz, 2013] Xiaoyu Ge and Jochen Renz. Repre-
sentation and reasoning about general solid rectangles. In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI), pages 905–911, 2013.

[Ge et al., 2014] XiaoYu Ge, Stephen Gould, Jochen Renz,
and Andrew Wang Peng Zhang Sahan Abeyasinghe,
Jim Keys. Angry birds game playing software version
1.32, 2014.

[Ghallab et al., 2015] Malik Ghallab, Dana Nau, and Paolo
Traverso. Automated Planning and Acting. preprint, 2015.

[AI birds, 2013] AI birds. Angry Birds AI Competition 2013
accepted papers. http://goo.gl/GM7eQT, 2013.

[AI birds, 2014] AI birds. Angry Birds AI Competition 2014
accepted papers. http://goo.gl/GkBF75, 2014.

[AI birds, 2015] AI birds. IJCAI 2015 Angry Birds AI Com-
petition. http://goo.gl/OEkd97, 2015.

[Jutzeler et al., 2013] Arnaud Jutzeler, Mirko Katanic, and
Jason Jingshi Li. Managing Luck : A Multi-Armed Ban-
dits Meta-Agent for the Angry Birds Competition. 2013.

[Narayan-chen et al., 2013] Anjali Narayan-chen, Liqi Xu,
and Jude Shavlik. An Empirical Evaluation of Machine
Learning Approaches for Angry Birds . 2013.

[Polceanu, 2014] Mihai Polceanu. Towards A Theory-
Of-Mind-Inspired Generic Decision-Making Framework.
2014.

[Shah, 2004] Nimish Shah. Knowledge Representation,
Reasoning and Declarative Problem Solving by C. Baral,
Cambridge University Press, 2003, 2004.

[Tziortziotis et al., 2014] Nikolaos Tziortziotis, Georgios
Papagiannis, and Konstantinos Blekas. A Bayesian En-
semble Regression Framework on the Angry Birds Game.
pages 1–12, 2014.

[Wa, 2014] Przemysaw Wa. Qualitative Physics in Angry
Birds : First Results, 2014.

[Zhang and Renz, 2014] Peng Zhang and Jochen Renz.
Qualitative Spatial Representation and Reasoning in An-
gry Birds: The Extended Rectangle Algebra, 2014.

https://aibirds.org/
https://aibirds.org/
http://goo.gl/GM7eQT
https://aibirds.org/
https://aibirds.org/
http://goo.gl/GkBF75
https://aibirds.org/
https://aibirds.org/
http://goo.gl/OEkd97

A Appendix: Refinement method
m−destroyAllP igs()

task :destroyAllP igs()

pre :P is not ∅
body :

P = getAllP igs()

if P is not ∅ :
nondeterministically choose p ∈ P :

destroy(p)

m1−chooseTarget()
task :chooseTarget()

pre :P is not ∅
body :

TNT = getTNTs()

if TNT is not ∅
for(t ∈ TNT)

if isReachable(t)

return t

m2−chooseTarget()
task :chooseTarget()

pre :P is not ∅
body :

P = getallP igs()

if P is not∅
get P ′ ⊂ P that is not blocked

nonderministicallychoose p

m1−destroyP ig(p)
task :destroyP ig(p)

pre :exist(p) = F

body :

m2−destroyP ig(p)
task :destropyP ig(p)

pre :exist(p) = T

body :

A = getAllBirds()

if A is not ∅ :
a = getCurrentBird() :

destroy(p, a)

m1−destroyP ig(p, a)
task :destropyP ig(p, a)

pre :exist(p) = T, exist(a) = T

body :

isBlocked(p)

hit(a, p)

m1−hit(a, obj)
task :hit(a, obj)

pre :exist(obj) = T, exist(a) = T

body :

tgtPnt = getHitPoint(obj)

sttPnt = estimateLauchPoint(sl, tgtPnt)

shot(sttPnt, time)

m2−hit(a, obj)
task :hit(a, obj)

pre :exist(obj) = T, exist(a) = T, blocked(obj) = T

body :

obs = getObstacles(obj)

nondeterministicallychooseob ∈ obs :
hit(a, ob)

m3−hit(a, obj)
task :hit(a, obj)

pre :exist(p) = T, exist(a) = T

body :

spObjs = getSupporters(p) :

nondeterministicallychoosesp ∈ spObjs :
hit(a, sp)

m4−hit(a, obj)
task :hit(a, obj)

pre :exist(p) = T, exist(a) = T

body :

tnts = getTNTs() :

nondeterministicallychoosetnt ∈ tnts :
hit(a, tnt)

B Appendix: Code
Our code is available on Github: https://github.com/
ruofeidu/CMSC722_AngryBirds

https://github.com/ruofeidu/CMSC722_AngryBirds
https://github.com/ruofeidu/CMSC722_AngryBirds

C Appendix: Sample Log
A sample log output illustrating how our system runs.

0 [System]
Program s t a r t s w i th c o n f i g u r a t i o n −d
32 [System]
S e r v e r w a i t i n g on p o r t : 9000
1051 [System]
C l i e n t c o n n e c t e d
1934 [System]
Running A∗ a g e n t w i t h o u t IRPE
8309 [V i s i o n]
D e t e c t i n g o b j e c t s i n t h e Angry B i r d s u s i n g v i s i o n module
10068 [V i s i o n]
D e t e c t TNTs 0
10069 [V i s i o n]
D e t e c t p i g s and r o l l i n g 1 , g l a s s 5 , s t o n e 1 , wood 27 , b i r d s 8
10069 [V i s i o n]
S t a t i s t i c s : 1 , 34 , 0
10213 [P l a n n e r]
m1−d e s t r o y A l l P i g s : 1 p i g s
10216 [P l a n n e r]
m2−d e s t r o y P i g ab . v i s i o n . ABObject [x =536 , y =290 , wid th =14 , h e i g h t =10]
10216 [P l a n n e r]
E s t i m a t e l a u n c h p o i n t from 2
10217 [P l a n n e r]
l a u n c h p o i n t j a v a . awt . P o i n t [x =9 , y =961] , a n g l e 73.79194556203768
17742 [Ac to r]
S h o o t i n g s t a r t s 193 , 328 , −184 , 633
27765 [Ac to r]
S h o o t i n g c o m p l e t e s
28096 [V i s i o n]
S c a l e f a c t o r = 1.0006048459391437
28267 [V i s i o n]
D e t e c t i n g o b j e c t s i n t h e Angry B i r d s u s i n g v i s i o n module
28943 [V i s i o n]
D e t e c t TNTs 0
28944 [V i s i o n]
D e t e c t p i g s and r o l l i n g 0 , g l a s s 2 , s t o n e 1 , wood 10 , b i r d s 2
28944 [V i s i o n]
S t a t i s t i c s : 0 , 13 , 0
29116 [P l a n n e r]
m1−d e s t r o y A l l P i g s : 1 p i g s
29116 [P l a n n e r]
m2−d e s t r o y P i g ab . v i s i o n . ABObject [x =536 , y =290 , wid th =14 , h e i g h t =10]
29117 [P l a n n e r]
E s t i m a t e l a u n c h p o i n t from 2
29117 [P l a n n e r]
l a u n c h p o i n t j a v a . awt . P o i n t [x =0 , y =959] , a n g l e 72.99302990476194
36778 [Ac to r]
no s l i n g d e t e c t e d , can n o t e x e c u t e t h e sho t , w i l l re−segement t h e image
37049 [V i s i o n]
D e t e c t i n g o b j e c t s i n t h e Angry B i r d s u s i n g v i s i o n module
38198 [V i s i o n]
D e t e c t TNTs 0
38198 [V i s i o n]
D e t e c t p i g s and r o l l i n g 0 , g l a s s 0 , s t o n e 4 , wood 5 , b i r d s 8
38198 [V i s i o n]
S t a t i s t i c s : 0 , 9 , 1

43113 [R e s u l t]
Leve l 1 g e t s 29290
43114 [R e s u l t]
T o t a l Score : 29290

	Introduction
	Background and Related Work
	Angry Bird
	Angry Birds AI Competition
	AI Planning for Angry Birds
	Machine Learning for Angry Birds

	Angry Birds Platform
	Problem Formalism
	State Variable Representation
	Commands and Tasks
	Refinement Method
	ARP-interleave with SeRPE
	Search methods for nondeterministic choice in SeRPE

	Implementation
	Greedy Algorithm
	Forward State-Space Search
	A*

	Experiments
	Datasets and constrains
	Experimental Results
	Highest Scores
	Average Time Cost
	Discussion

	Conclusion
	Appendix: Refinement method
	Appendix: Code
	Appendix: Sample Log

