
LUCSS: Language-based User-customized Colorization of Scene
Sketches

CHANGQING ZOU∗, University of Maryland, College Park, United States
HAORAN MO∗, Sun Yat-sen University, China
RUOFEI DU, University of Maryland, College Park, United States
XING WU, Sun Yat-sen University, China
CHENGYING GAO, Sun Yat-sen University, China
HONGBO FU, City University of Hong Kong, Hongkong

It's a moonlit night. There is a moon in the sky. A house is in the
middle. A car is in front of the house. Three trees are on the left of the
house. Two trees are on the right back of the car. There is a road.

It is a moonlit night. There is a yellow moon in the sky. An orange
house with light gray roof is in the middle. A yellow car with blue
window is in front of the house. Three green trees are on the left of
the house. Two green trees are on the right back of the car. There is
a yellow road. The sky is blue and all things are on green grass.

It is a moonlit night. There is a purple moon in the sky. A yellow
house with yellow roof is in the middle. A blue car with light gray
window is in front of the house. Three yellow trees are on the left of
the house. Two yellow trees are on the right back of the car. There is
a light brown road. The sky is gray and all things are on yellow
grass.

It is a moonlit night. There is a yellow moon in the sky. A blue house
with blue roof is in the middle. A red car with blue window is in
front of the house. Three green trees are on the left of the house. Two
green trees are on the right back of the car. There is a dark gray
road. The sky is blue and all things are on green grass.

Fig. 1. We present LUCSS, a language-based interactive colorization system for scene sketches. It takes advantage of both instance level segmentation and
language models in a unified generative adversarial network, allowing users to accomplish different colorization goals in a form of language instructions. Left:
input scene sketch and its content description automatically generated by LUCSS. Three right columns show the colorization results generated by LUCSS
following three different instructions at the bottom. Texts underlined are user-specified, with the target colors highlighted in bold.

Abstract.We introduce LUCSS, a language-based system for interactive col-
orization of scene sketches, based on their semantic understanding. LUCSS
is built upon deep neural networks trained via a large-scale repository of
scene sketches and cartoon-style color images with text descriptions. It
consists of three sequential modules. First, given a scene sketch, the seg-
mentation module automatically partitions an input sketch into individual
object instances. Next, the captioning module generates the text description
with spatial relationships based on the instance-level segmentation results.
Finally, the interactive colorization module allows users to edit the caption
and produce colored images based on the altered caption. Our experiments
show the effectiveness of our approach and the desirability of its components
to alternative choices.

CCS Concepts: • Computing methodologies → Image Processing;

Additional Key Words and Phrases: Deep Neural Networks, Sketch Caption-
ing, Sketch Colorization, Scene Sketch
∗Both authors contributed equally to the paper

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2018/9-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Changqing Zou, HaoranMo, Ruofei Du, XingWu, ChengyingGao, andHongbo
Fu. 2018. LUCSS: Language-based User-customized Colorization of Scene
Sketches. 1, 1 (September 2018), 14 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
Sketching is one of the most efficient and compelling ways to com-
municate complex ideas among humans. While abstract sketches
can be easily understood by us, teaching machines to understand
the underlying semantics of sketches remains a challenging task. Re-
cent research has achieved semantic understanding for individually-
sketched objects and fostered applications such as sketch-based
shape retrieval [Wang et al. 2015] and sketch classification [Eitz
et al. 2012a].

Nevertheless, instance-level understanding, as often used in scene
sketches, has not received much attention. Scene sketches usually
contain multiple sketched objects, depict scenes of real or imagi-
nary worlds, and widely appear in various scenarios, such as story
books, sketch movies, and Computer-Aided Design (CAD) software.
In this paper, we investigate the instance-level segmentation and
interpretation of scene sketches. Our work can benefit a number
of applications such as sketch-based co-retrieval [Xu et al. 2013]
and context-based sketch classification [Zhang et al. 2018], which

, Vol. 1, No. 1, Article . Publication date: September 2018.

ar
X

iv
:1

80
8.

10
54

4v
1

 [
cs

.C
V

]
 3

0
A

ug
 2

01
8

:2 • Zou et al.

currently take as input manual segmentation of individual scene
objects.

With recent advances of deep neural networks and the availability
of large-scale datasets such as MS COCO [Lin et al. 2014] and Ima-
geNet [Deng et al. 2009], machines have outperformed humans in
various image understanding tasks for natural images, such as image
classification, face recognition, and image generation. Nevertheless,
the power of deep networks for scene sketches is still unexplored,
and the applications based on scene sketch understanding have
rarely been investigated.
To address these problems, in [Zou et al. 2018], we have built a

large-scale scene sketch dataset, called SketchyScene, and conducted
initial studies on category-level semantic segmentation of scene
sketches. In this paper, we investigate two research goals: 1) the
capability of deep neural networks for scene sketch understanding,
and 2) the potential applications based upon instance-level under-
standing.
To achieve these two goals in a unified framework, we present

LUCSS, a language-based interactive colorization system, which con-
sists of three interrelated modules: instance segmentation, caption-
ing, and colorization. The instance segmentation module addresses
how to employ deep networks for segmenting an input scene sketch
into object instances. The colorization module can be considered
as an application which produces a colorized image conforming to
user-specified color requirements for segmented objects. Serving
as a link between the segmentation and colorization modules, the
captioning module takes the output of the segmentation module as
input, and automatically generates a caption describing the input
scene sketch. Motivated by the recent success of intelligent personal
assistants such as Apple Siri and Amazon Alexa, which are enabled
by speech recognition and natural language processing, we present
a language-based approach that enables users to embed customized
colors into the text description, instead of drawing color strokes on
the sketch to specify the colors. Our approach is more compatible
with voice commands for future multimodal colorization systems
that can further enhance the user experience.
In this paper, we mainly address two challenging research prob-

lems. First, how shall we achieve precise instance-level segmenta-
tion? High-quality segmentation results are crucial to the subse-
quent colorization process, since users might specify different colors
for individual objects. Unlike natural images, an input scene sketch
consists of merely black lines and white background. Inferring in-
stance segmentation of a sketched scene is thus challenging due to
the sparsity of the visual features (for example, the foreground pixels
only occupy 13% of all the pixels in SketchyScene [Zou et al. 2018]).
Employing the state-of-the-art segmentation methods designed for
natural images (e.g., [He et al. 2017]) directly on sketches does not
provide promising results, as shown in Section 6. To address this
problem, we enhance powerful segmentation models designed for
natural image segmentation with the unique characteristics of scene
sketches.
Second, how shall we colorize a high-resolution scene sketch

with respect to language-based color inputs? Although the coloriza-
tion of a single sketched object has been extensively investigated,
the colorization of scene sketches with customized color labels re-
mains an open problem. This challenge requires our system to build

accurate correspondences between the object instances (parts of
object instances) and text-based color specifications. Additionally, it
requires the system to infer both object-level and object-part-level
segmentation. For example, a user may assign different coloriza-
tion goals to the window of the car as in shown in Figure 1. To
tackle this problem, we present a novel architecture which embeds
LSTM (Long Short-Term Memory) to a sophisticated Generative
Adversarial Network (GAN).

Furthermore, generating high-quality and high-resolution col-
orization results (768 × 768) is not a trivial task. We address this
issue by using a two-stage pipeline consisting of object colorization
and background colorization. Our experimental results (Section 7
and the supplementary materials) show that the LUCSS colorization
framework achieves visually pleasing results.

We highlight the major contributions of LUCSS as follows:
(1) The first language-based, user-customizable colorization frame-

work for scene sketches.
(2) The first solution for instance-level segmentation of scene

sketches.
(3) A colorization dataset of scene sketches with text description

and instance-level segmentation.

2 RELATED WORK
Our work is inspired by and build upon previous work in image
segmentation, colorization, captioning, and generation with convo-
lutional neural networks (CNNs) and conditional generative adver-
sarial networks (cGANs).

2.1 Image Segmentation
In recent years, CNNs have been proven to yield the state-of-the-art
accuracy in semantic object segmentation [Chen et al. 2017a, 2016;
Shelhamer et al. 2016; Zhao et al. 2016]. The success of these meth-
ods is driven by large-scale, manually-annotated datasets, such as
ImageNet [Deng et al. 2009] and MS COCO [Lin et al. 2014], which
consist of millions of photographs with segmented objects. These
methods often jointly predict a segmentationmask and an objectness
score based on some appearance features that are specific to an indi-
vidual class. Instance segmentation has become more common after
the introduction of the R-CNN pipeline using category-independent
region proposals [Hariharan et al. 2014]. Recently, a few methods
have shown promise in the task of end-to-end trained instance seg-
mentation [Girshick 2015; He et al. 2017; Ren et al. 2015a]. These
approaches perform local and spatially-varying “objectness” esti-
mates, with a simple global aggregation step in the end.
In our prior work [Zou et al. 2018], we conducted a pilot study

on category-level semantic segmentation of scene sketches. In this
paper, we investigate the problem of instance-level segmentation
in scene sketches. Existing solutions for instance segmentation of
natural images (e.g., [He et al. 2017]) cannot produce satisfactory
results for scene sketches because they do not consider the unique
characteristics of scene sketches. Please refer to Section 4 for further
discussion.

2.2 Sketch Understanding
Sketch recognition is perhaps the most popular problem in sketch
understanding. Since the debut of TU-Berlin dataset [Eitz et al.

, Vol. 1, No. 1, Article . Publication date: September 2018.

LUCSS: Language-based User-customized Colorization of Scene Sketches • :3

2012b], many approaches have been proposed and the state-of-the-
art approaches have even outperformed human beings in terms of
the recognition accuracy [Yu et al. 2017]. Prior algorithms can be
roughly classified into two categories: 1) those using hand-crafted
features [Eitz et al. 2012b; Schneider and Tuytelaars 2014], and 2)
those learning deep feature representations [Ha and Eck 2017; Yu
et al. 2017]. The latter generally outperform the former by a clear
margin.

Another stream of work has delved into parsing sketched objects
into their semantic parts. Sun et al. [2012a] proposed an entropy de-
scent stroke merging algorithm for both part-level and object-level
sketch segmentation. Huang et al. [2014] leveraged a repository
of 3D template models composed of semantically segmented and
labeled components to derive part-level structures. Schneider and
Tuytelaars [2016] performed sketch segmentation by looking at
salient geometrical features (such as T-junctions and X-junctions)
via a Conditional Random Field (CRF) framework. Instead of study-
ing single object recognition or part-level sketch segmentation, we
conduct an exploratory study for scene-level parsing of sketches,
by using the large-scale scene sketch dataset SketchyScene [Zou
et al. 2018].

2.3 Image Captioning
With the recent advances in deep neural networks and language
learning models, a number of impressive algorithms for image cap-
tioning have been developed [Chen and Zitnick 2014; Donahue et al.
2014; Mao et al. 2015; Vinyals et al. 2016; Xu et al. 2015; Zhou et al.
2016]. We direct readers to a recent survey [Bernardi et al. 2016],
which summarizes related datasets and an evaluation of various
models. More recently, attention mechanisms have been applied to
the network for narrowing down subjects and thus improving cap-
tioning results [Anderson et al. 2018; Das et al. 2017; Xu et al. 2015].
These modern image captioning models generally consist of two
parts: an image encoder and a language model. The image encoder
encodes a raw image into a feature map using a CNN, while the lan-
guage model generates text sequentially with the extracted feature
map and the inherited probabilistic dependency. In contrast to prior
works which aim to generate human-like extractive captions, our
captioning module directly produces a lower-level detailed descrip-
tion, which covers the entire scene sketch based on the results of
instance segmentation. We use this instance-segmentation-based
captioning module for user input assistance.

2.4 Scene Sketch Based Applications
While there is little work on semantic segmentation of scene sketches,
some interesting applications have been proposed to utilize scenes
with pre-tagged or pre-segmented sketched objects as input. For
example, Sketch2Photo [Chen et al. 2009] combines sketching and
photo montage for realistic image synthesis. Sketch2Cartoon [Wang
et al. 2011] is a similar system which focuses on cartoon images.
Similarly, Xu et al. [2013] propose Sketch2Scene, an automatic sys-
tem which generates 3D scenes by co-retrieving and co-placing
3D shapes with respect to a scene of pre-segmented sketched ob-
jects. Sketch2Tag [Sun et al. 2012b] is a sketch-based image retrieval
(SBIR) system, where scene items are automatically recognized and
used as a text query to improve the retrieval performance. Our work

provides automatic instance segmentation algorithms for scene
sketches, and can immediately benefit the above applications.

2.5 Image Colorization
Image colorization assigns a three-dimensional label (RGB) to each
pixel from an input gray-scale or sketch image. Early studies of
colorization methods are mainly based on user interaction [Huang
et al. 2005; Qu et al. 2006a; Yatziv and Sapiro 2006] or similar ex-
amples [Charpiat et al. 2008; Welsh et al. 2002] from gray-scale
photographs. To achieve user-customized colorization, interactive
strokes [Huang et al. 2005; Levin et al. 2004] are widely used to pro-
vide local guidance based on local intensity differences and spatial
offsets [Luan et al. 2007; Qu et al. 2006b]. Further approaches using
local guidance devise better similarity metrics by employing long
range connections [An and Pellacini 2010; Xu et al. 2009] and local
linear embeddings [Chen et al. 2005] to minimize user efforts. In
addition to local guidance, non-local mean-based patch weight [Yao
et al. 2010] and color palette [Chang et al. 2015] have also been
proposed to provide global guidance.

Recent colorization systems [Cheng et al. 2015; Deshpande et al.
2015; Iizuka et al. 2016; Larsson et al. 2016; Yan et al. 2016], take
advantage of deep CNNs and large-scale datasets to automatically
produce plausible color images from gray-scale inputs. Adapting
these models to scene sketches is a challenge since scene sketches
are sparser than gray-scale images. Another line of research focuses
on sketch colorization which generates color images from black-
and-white sketches [Güçlütürk et al. 2016; Liu et al. 2017b; Sangkloy
et al. 2017a; Xian et al. 2017]. However, most of the prior sketch
colorization approaches target object-level sketches, while our work
is a scene-level sketch colorization method.

Sangkloy et al. [2017b] has developed a system to translate sketches
to real images, with colorization goals assigned by user color strokes.
This system can well convey the user’s colorization goals to image
regions but its extensibility may be limited. PaintsChainer [Yonetsuji
2017] and Frans et al. [2017] have developed open-source interac-
tive online applications for line-drawing colorization. Concurrently,
Chen et al. [2017b] proposed a language-based colorization method
for object-level sketches or gray-scale images. Our system is close
to [Chen et al. 2017b] but we focus on scene-level sketch coloriza-
tion.

2.6 Image Generation with GANs
Several recent studies, such as DCGAN [Radford et al. 2015], Pix2Pix
[Isola et al. 2017], WGAN [Arjovsky et al. 2017], and SketchyGAN
[Chen and Hays 2018], have demonstrated the value of variant
GANs for image generation. The variations of conditional GANs
have been further applied to text-to-image synthesis [Hong et al.
2018; Reed et al. 2016; Zhang et al. 2017], image inpainting [Pathak
et al. 2016; van den Oord et al. 2016; Yeh et al. 2016], and image super-
resolution [Ledig et al. 2017; Sønderby et al. 2016]. Nonetheless, all
the aforementioned generators are conditioned solely on text or
images. In contrast, LUCSS takes both image and text as input,
presenting an additional challenge of fusing the features of a scene-
level image and the corresponding text description.

, Vol. 1, No. 1, Article . Publication date: September 2018.

:4 • Zou et al.

Captioning Module Colorization Module

Instance

Segmentation
Captioning

Caption

Re-editing
Instance

Colorization

Background

Colorization

Segmentation Module Captioning Module Colorization Module

Fig. 2. The modules and the workflow of the LUCSS pipeline.

3 SYSTEM OVERVIEW
As illustrated in Figure 2, our system processes an input sketch
through multiple stages. It first performs instance segmentation to
recognize and locate individual objects in the scene sketch, and then
automatically produces the caption describing lower-level detailed
information of the sketch (e,g., object category, object position, quan-
tity) with a template-based algorithm. Next, the user can specify
colorization goals by changing the automatically-generated caption.
Finally, the system colorizes the whole sketch into a color image,
where each segmented instance meets the user’s requirements via a
novel cGAN based model.
The system contains three sequential modules. The first one is

an instance segmentation deep network. It takes as input a scene
sketch image, and outputs the class labels and the instance identity
label for each pixel belonging to the objects in the scene. In this
module, we adapt the state-of-the-art segmentation models (includ-
ing Deeplab V2 and Mask-RCNN) to the sketch data via analyzing
the characteristics of the sketch data. The segmentation accuracy is
significantly improved compared to the original models.
The second module is a language template-based caption gen-

erator. Taking the segmentation results as input, it analyzes the
geometric relationships between object instances (e.g., position and
occlusion relationships) and generates object-level scene descrip-
tions. Figure 1 shows a typical result of this module. Besides caption-
ing, this module provides a friendly interface for the user to assign
different editing goals for individual object instances. This module
can facilitate the system to build the exact correspondence between
object instances in the scene and their corresponding sentences
(since the caption is generated by the system from the segment
instances, correspondences can be easily obtained by comparing
the user-modified caption with the original one). In contrast to
recent research [Chen et al. 2017b], which implicitly infers the cor-
respondence between object parts and sentences using an attention
mechanism, we leverage the captioning module to achieve more
accurate correspondence, especially for complex scenes. As shown
in the experiment of Section 7.1, implicit inference usually fails on
a long caption with more than six sentences, but our approach has
no such constraint. Hence it provides a better assurance that results
will achieve user specifications.

The last module is a typical application based on the instance
segmentation results. In this work we focus on the colorization
task. Unlike recent research which aims to colorize single objects or
relatively simple scenes [Chen et al. 2017b; Liu et al. 2017c; Varga
et al. 2017], our work aims to solve a complex scene sketch col-
orization problem with the help of language-based user instruction.
Our experiment in Section 5 found that even the most best model
to date [Chen et al. 2017b] is unable to successfully colorize each

Reference Image Scene Sketch Instance Segmentation

Fig. 3. An example scene template from SketchyScene. (a) shows a cartoon-
style reference image harvested from the Internet, (b) shows a user-
synthesized scene sketch using a repository of instance sketch, and (c)
shows the ground-truth labels of the instance segmentation.

individual object instance to exactly meet the user’s needs. The
main reason is that a user’s language instructions usually have
ambiguity, especially when the target scene is complex (e.g., there
are multiple object instances belonging to the same category in a
scene). Our solution is to decompose the colorization of the whole
scene sketch into two sequential steps: instance colorization and
background colorization. In instance colorization, each object in-
stance is colorized. While in background colorization, the remaining
regions which do not belong to any object instance are colorized.
This divide-and-conquer strategy leverages the natural advantages
of the segmentation approach, making the colorization of a complex
scene sketch resolvable.

Dataset.We use SketchyScene as the basic dataset to study the
segmentation and colorization problem. SketchyScene contains
7,264 scene templates, each scene template corresponding to a color
reference image. Moreover, SketchyScene provides the ground-truth
for both semantic segmentation and instance segmentation of 7, 264
scene sketches. Figure 3 shows a typical example of a scene sketch
in SketchyScene. See the supplementary material for more details
of SketchyScene.

4 SEGMENTATION AND CAPTIONING

4.1 Instance Segmentation
Formulation. Instance segmentation segments individual object
instances, possibly of the same object class in a scene sketch. This
is challenging, especially when the instances of the same class have
occlusions, e.g., two trees growing together, as shown in Figure
3. Apart from using pixel-level class labels as supervision, spatial
information like object bounding box is necessary. Generally, in an
instance-level segmentation task, each unknown instance I in the
input image can be denoted as a tuple [B,L,M]. Here,M is a binary
mask covering the instance, L is a class label, and B is the 4-D vector
encoding the position and size of the bounding box in the format of
[x ,y,H ,W], where [x ,y] indicates the top-left corner and H andW

, Vol. 1, No. 1, Article . Publication date: September 2018.

LUCSS: Language-based User-customized Colorization of Scene Sketches • :5

(a) the input scene sketch ground truth instance segmentation (c) the result of Mask-RCNN(b)

Fig. 4. An illustration of instance segmentation using the state-of-the-art
model Mask-RCNN [He et al. 2017] on a representative scene sketch of
SketchyScene. Note that though the bounding boxes in (c) from the Mask-
RCNN model are roughly aligned with the ground truth labels (b), the
Mask-RCNN model misclassifies the strokes of the person as the bench
class and fails to follow the black lines at the pixel level.

represent the height and width, respectively. Our goal of instance
segmentation is to assign pixels of a scene sketch image to a specific
instance maskM located in an inferred B.

Unlike natural images, a sketch only consists of black lines and a
white background. Given that only black pixels convey semantic in-
formation, our problem for instance segmentation of a scene sketch
is defined as predicting [B,L,M] for each black pixel. Taking the
rightmost image of Figure 3 as an example, when segmenting trees,
duck, house and cloud, every black pixel should be assigned to a
specific instance mask M with a class label L, located in B, while
the remaining white pixels are treated as background.
Challenges. Segmenting a sketchy scene is challenging mainly

due to the sparsity of visual features. First, a scene sketch image is
dominated by white pixels. For the 7, 264 examples of SketchyScene,
the average background ratio is 87.83%. The remaining pixels belong
to foreground classes. The classes, asmeasured by their sketch pixels,
are thus quite imbalanced. Second, segmenting occluded objects in
sketches is much harder than in natural images, where an object
instance often contains uniform colors or texture so that context
information can help in segmentation. Unfortunately, such cues do
not exist in a scene sketch.
The sparsity of visual features causes the instance segmenta-

tion models, designed for natural images, perform poorly on scene
sketches. In an initial experiment, we found that the segmenta-
tion results are unsatisfactory even with the state-of-the-art model
Mask-RCNN [He et al. 2017] (see a representative result in Fig. 4
(3)). Although Mask-RCNN can successfully detect the bounding
boxes of object instances in a scene sketch, the binary masks often
fall out of the black lines.
Methodology. Our initial study in [Zou et al. 2018] has reported

a significant finding on a semantic segmentation task. That is, the
challenge for sketch scene segmentation is mainly caused by the
large area of background. In a model tailored to this property the
background pixels should not contribute to the loss during training.
During the inference, background pixels are assigned to an arbitrary
class label, and are filtered out by the drawing mask of the input
sketch for the final output. Using this strategy, the adapted DeepLab-
v2 model [Zou et al. 2018] can improve the semantic segmentation
MIoU (Mean Intersection over Union) by more than 10%. On the
test examples, this model achieved the best performance (63.1% on
MIoU) over DeepLab-V3 models [Chen et al. 2017a], SegNet [Badri-
narayanan et al. 2017], and FCN-based [Long et al. 2015] model.

(1) (2) (3) (4)

Fig. 5. Result of the adapted DeepLab-v2 model can be further refined
by a postprocess based on edgelist, in which each entity is a skeleton of a
drawing cluster. From left to right: (1) scene sketch, (2) output of the adapted
DeepLab-v2 model in [Zou et al. 2018], (3) edgelist, and (4) post-processed
result with edgelist.

Inspired by this finding, we have also tailored Mask-RCNN with
this property, i.e., ignoring the contribution of the background pix-
els when training the model. This adapted model also significantly
improves the segmentation quality (Section 6).
Inspired by recent methods [Arnab and Torr 2017; Liang et al.

2015], which adopt a segmentation-first strategy, our final solution
for instance segmentation is a framework which infers B and M
based on semantic segmentation results. Specifically, we use Mask-
RCNN to generate the bounding boxes B and L. We use the semantic
segmentation results generated by an improved variation of the
DeepLab-v2 model within the region of B to computeM .
Although the DeepLab-v2 model leverages a densely connected

conditional random field (CRF) as the post-processor to refine the
label inference, it still produces some discontinuous labels even on
drawings which appear to belong to the same “edge" (see the ear of
the cat in Figure 5). The degradation of CRF on sketches is mainly
caused by the sparsity of sketches. CRF models the similarity of the
class labels in an 8-connected neighborhood, while in a sketch a
non-background pixel is usually affected by the neighboring pixels
along sketch lines. This motivated us to use an assumption based on
edgelist to further improve the results: the non-background pixels
corresponding to the same drawing cluster (i.e., super-pixel consist-
ing of only black pixels) should have the same class label.

An edgelist is defined as a set of single-pixel-width edges, inwhich
each edge is a single-pixel-width skeleton of a drawing cluster as
shown in Figure 5(3). Given a sketch, we first extract the single-
pixel-width skeleton using the edge-link algorithm [Kovesi 2012].
After that, we compute the nearest skeleton (i.e., an item of edgelist)
for each non-background pixel and separate the sketch into a set
of drawing clusters. We finally assign the majority class label of a
drawing cluster to all the non-background pixels of the same cluster.
We present the experimental results of this improved framework in
Section 6.

4.2 Captioning
We develop a template-based algorithm for caption generation that
starts from the output of the segmentation module (i.e., a list of
[B,L,M], where Bi , Li , andMi contain the information of size, lo-
cation, and class label of an object instance i). The steps of the
algorithm are shown in Algorithm 1. It first classifies all the objects
into three sets according to their class labels (we make this classifica-
tion because SketchyScene was built by three sets of objects: objects
related to weather or time, objects related to the site environment,
and other objects related to the site environment). The first setW is
for objects related to weather or time (e.g., sunny or cloudy, night or

, Vol. 1, No. 1, Article . Publication date: September 2018.

:6 • Zou et al.

Sketch MRUs MRUs
×5

MRUs

Skip connections

Text

Encoder

LSTM LSTM LSTM

Concat Concat Concat

mLSTM mLSTM mLSTM

A yellow bus

Synthesized
image

Real image

Generator

H'×W'×512

H'×W'×512

Tile Tile Tile

512

512

H'×W'×1024

H'×W'×1536

(H' = H / 32)

Discriminator

Encoder Encoder

labels

192×192

Iin

96×96 48×48 24 ×24 12×12

Iin Iin Iin Iin

MRU block

MRUs

×5×5

×5

Fig. 6. Network architecture for object colorization, composed of a convolutional image encoder built on MRU blocks, a fusion module consisting of LSTM text
encoders and multimodal LSTMs (mLSTM), a de-convolutional image decoder, and a MRU-blocks-based convolutional discriminator. The structure of the
MRUs, which is shown at the right bottom corner, is inspired by SketchyGAN [Chen and Hays 2018].

day). The second set E is for objects which usually have a larger size
and might determine the site environment of the scene sketch (e.g.,
house, road, table, and bus). The last set is for the other objects O.
Afterwards, we sequentially describe the objects from [W,E,O]. For
objects from W, the algorithm generates a general weather descrip-
tion according to object labels, e.g., “it is a sunny day”. For objects
from E, it produces the sentences which describe the information of
class labels and absolute locations. A typical description is “There is
a house in the center of the image". For objects from O, it produces
the description of the formation of class labels and relative locations.
A typical description is “A person is in front of the house".

Algorithm 1: Sketch Captioning
Input: pred_boxes B, pred_class_labels L, pred_class_masksM ,
Output: caption T

1 items ←Node(B,L,M)
2 for item ∈ items do
3 if item ∈ W then
4 TWeather←Weather(item)
5 if item ∈ E then
6 TEnvironment←Environment(item)
7 if item ∈ O then
8 TObject←Object(item)

9 T←Tweather+TEnvirment+TObject
10 return T

The captioning module is applied to a human-machine interface
as shown in the supplementary video. It is used to visualize the

correspondence between an object in the input sketch and the cor-
responding sentence in the caption. Apart from captioning itself,
there are two additional functions: 1) visualize if the sketch parsing
results are accurate or not, and 2) visualize if the colorization goal
is assigned to a desired object.

5 COLORIZATION
The colorization process contains two sequential steps: object in-
stance colorization and background colorization. The object instance
colorization step assigns target colors to the pixels belonging to
segmented object instances, including their blank inner regions.
Background colorization assigns colors to the remaining pixels.

5.1 Object Instance Colorization
Overview. The proposed framework for object instance coloriza-
tion as shown in Figure 6 is a conditional GAN model consisting
of a generator G and a discriminator D. G takes as input an ob-
ject sketch image I and its corresponding language description
S = {w1,w2, ...,wt ...,wT }, where wt are individual words in the
sentence, and generates a color image. Compared with the genera-
tors in existing literature [Chen and Hays 2018; Isola et al. 2017],
which learn mappings from an input sketch or image to an output
image, our generator G models the interaction among the text de-
scription, visual information, and spatial relationships, and finally
fuses the multi-modal features together. The generation of the color
images is controlled by the text information. The discriminator,
which is the opponent of the generator, is fed with both the gener-
ated images and the real color images at the same time, and serves
the function of judging whether an image looks real or not.

Generator. The basic architecture of the generator is an encoder-
decoder structure built on MRU blocks [Chen and Hays 2018]. It

, Vol. 1, No. 1, Article . Publication date: September 2018.

LUCSS: Language-based User-customized Colorization of Scene Sketches • :7

consists of three modules: an image encoder which encodes the
features of the H ×W input sketch (segmented object sketch), a
fusion module which fuses the text information into the image fea-
ture map generated by image encoder, and finally an image decoder
which takes the fusion map produced by the fusion module and pro-
duces an H ×W ×C map, where C is the number of color channels.
The MRU block is first proposed in [Chen and Hays 2018], which
uses a learned mask to selectively extract features from the input
images. Its cascaded structure of MRU blocks allows the ConvNet
to repeatedly and progressively retrieve the information from the
input image on the computation path. In this work, we use MRU
blocks in both the encoder and decoder. In our implementation, we
use five cascaded MRUs to encode the H ×W input sketch image
into an H ′ ×W ′ feature map (H ′ = H

32 ,W
′ = W

32) for the encoder.
For the decoder, five symmetric MRUs are cascaded as a multi-layer
de-convolutional network. Skip-connections are applied between
the encoder and the decoder, concatenating the output feature maps
from the encoder blocks to the output of the corresponding decoder
blocks.

The fusionmodule fuses the text information in S into theH ′×W ′

image feature map, and outputs an H ′ ×W ′ fusion feature map. It
is a core module of the generator and inserted into the bottleneck
phase of the generator. The basic architecture of our fusion module
is a convolutional multimodal LSTM, called recurrent multimodal
interaction (RMI) model which was used to fuse the information of
image referring expressions to segment out a referred region of the
image [Liu et al. 2017a]. The typical characteristic of an RMI model
is that the language model can access the image from the beginning
of the language expression, allowing the modeling of the multi-
modal interaction. Our work uses RMI to mimic the human image
colorization process. For each region in the input sketch, the fusion
module reads the language feature map repeatedly until sufficient
information is collected to colorize the target image region.
A concurrent system [Chen et al. 2017b] called LBIE (Language-

Based Image Editing) has used a similar model to segment and
colorize object parts of interest in an image conditioned by lan-
guage descriptions. We have implemented the fusion module for
our generator with both RMI and LBIE. We present the comparison
results in the experimental section.
Discriminator. The discriminator D takes in a generated im-

age and outputs the probability of the image being realistic. The
structure of the discriminator follows SketchyGAN [Chen and Hays
2018] which uses four cascaded MRUs. It takes four types of scales
of the real and generated images.
Loss and training.We use a hybrid loss following SketchyGAN

[Chen and Hays 2018] which includes a GAN loss and an auxiliary
classification loss in the Discriminator, a GAN loss, an auxiliary
classification loss, an L1 loss, a perceptual loss, and a diversity loss
in the Generator. The auxiliary classification loss can improve the
ability of both the Discriminator and the Generator, and further
enhances the quality of the synthesized images. The L1 distance loss
is for comparison between the synthesized image and the ground-
truth cartoon image. The perceptual loss and diversity loss are for
generating diverse results.

5.2 Background Colorization
The background colorization network takes as input the result of
object instance colorization, and infers the colors of the background
regions to produce the final colorful image. The network architec-
ture still employs a cGAN structure similar to that used for object
instance colorization, with some modification as detailed below.

Generator. The architecture of the generator is similar to that
shown in Figure 6. We replace MRU blocks with residual blocks
[He et al. 2016]. Both the encoder and decoder use five cascaded
residual blocks. The residual unit numbers of the five residual blocks
for the encoder are {1, 3, 4, 6, 3} ({3, 6, 4, 3, 1} for the decoder). We
make this change because an MRU block, which uses a binary mask
to selectively extract features from a sketch, is more suitable for
sketch images than color images. Our initial experiments confirm
this speculation. The colorized backgrounds produced by the gener-
ator shown in Figure 6 (i.e., the generator used for object instance)
usually have sharp region boundaries, leading to relatively poor
visual effects (also see the results shown in the second column from
right of Figure15). Apart from the use of residual blocks, we have
also conducted some experiments with the network replacing MRU
blocks with the encoder blocks in [Isola et al. 2017].

Discriminator. For the discriminator, we use the architecture
shown in Figure 7. It is a combination of the RMI model and five
cascaded encode blocks used in pix2pix [Isola et al. 2017]. Unlike
the generator, each of the five cascaded encoder blocks contains a
single layer, which decreases the complexity of the entire cGAN.
In addition, the input text information is also fused into the image
feature by the RMI model. The joint modeling of the text and image
helps the discriminator make a judgment monitored by the text
information. Our experimental results (shown in supplementary
materials) show that the joint modeling improves the capability of
the whole network. Note that we do not use the RMI model to fuse
the text information for the discriminator of object instance coloriza-
tion. We simplify the discriminator because the discriminator with
the fusion module does not improve the colorization significantly
on single object sketches with lower resolution (192 × 192) in our
initial experiments.

Loss and training. As for the loss and training, we follow the
scheme of Pix2Pix [Isola et al. 2017]. We only use a conditional GAN
loss as well as a L1 distance loss. The diversity loss is not used here
as we do for object colorization, because we expect to suppress the
diversity of the generated background.

6 SEGMENTATION EVALUATION
We conducted our experiments for segmentation on SketchyScene.
The entire dataset, including 7,264 unique scene sketch templates,
was randomly split into training (5,616), validation (535), and test
(1,113) datasets.
Segmentation models. We compared four types of frameworks:
Mask-RCNN (Model-1), Mask-RCNN + w/o BG (Model-2), Mask-
RCNN + edgeList (Model-3), and Mask-RCNN + adapted DeepLab-
v2 + edgeList (Model-4). These four frameworks are abbreviated
as Model-1 to Model-4 below. Model-1 is extended from Faster-
RCNN [Ren et al. 2015b] by adding a parallel object mask prediction
branch and is one of the most advanced methods proposed for
instance segmentation on natural images. Model-2 is an adapted

, Vol. 1, No. 1, Article . Publication date: September 2018.

:8 • Zou et al.

Encoder

LSTM LSTM LSTM

Concat Concat Concat

mLSTM mLSTM mLSTM

94x94x1

94×94×1

Tile Tile Tile

1

94×94×2

94×94×3

Encoder Encoder

The
Concat Encode

Encode

Encode

Encode

Encode

 Input
768×768×3 768×768×3

768x768x6

384×384×64

192×192×128

96×96×256

95×95×512

Sigmoid

sky blue

1 1

Fig. 7. Structure of the discriminator for background colorization. The struc-
ture combines five cascaded encode blocks used in the pix2pix network
[Isola et al. 2017] and RMI model.

Mask-RCNN model, where background pixels do not contribute
to the loss during training. Model-3 is extended from Model-2 by
adding a post-processing using edgelist. Model-4 is a combination
model of the adapted DeepLab-v2 model [Zou et al. 2018] andModel-
3, which means only the mask pixels, whose semantic label from
adapted DeepLab-v2 is the same with the predicted label fromMask-
RCNN, will be retained. The results of all the four models were
filtered with the binary mask of non-background pixels. Similar
to [He et al. 2017], we use AP (MS COCO metric), AP50 and AP75
(PASCALVOCmetrics) as evaluationmetrics. It is worthmentioning
that except for Model-1, all others: Model-2, Model-3, and Model-
4 are our methods. The final segmentation model of LUCSS uses
Model-3.
Implementation details.We implemented the proposed tech-

nique using Deeplab-v2 on Python 3 and TensorFlow, based on a
ResNet101 backbone. The initial learning rate was set to 0.0001 and
mini-batch size to 2. We set the maximum training iterations as 50K
and the choose SGD (Stochastic Gradient Descent) as the optimizer.
We resized the images as 768 × 768. The hyper parameters σα ,σβ ,
and σγ of denseCRF in the adapted DeepLab-v2 were set to 7, 3, and
3, respectively.
Results. Table 1 shows the performance of the different models.

Clearly, Model-2 performs much better than Model-1. It indicates
that ignoring background pixels improves the segmentation task,
which confirms the conclusion we made in [Zou et al. 2018]. Al-
thoughModel-3 achieves slightly higher average quantitative values
than Model-2, we find the improvement due to the use of edgelist
usually occurs on some non-background pixels, which represent
salient category characteristics such as the ear of a cat as shown in
Figure 5. The improved performance is thus visually clearer. Model-4
obtains slightly better AP value in validation set compared to Model-
3, but it gets worse in test set. Figure 8 shows some segmentation
results of the above compared methods. More results can be found
in the supplementary materials.

7 COLORIZATION EVALUATION

7.1 Main Results
We compared LUCSS to LBIE [Chen et al. 2017b] for scene sketch
colorization, since to the best of our knowledge, LBIE is the only
existing colorization work with the same goals as ours, i.e., taking a

Model-1 Model-2 Model-3 Model-4

Fig. 8. Qualitative results of four competitors for instance segmentation.
The improvement by ignoring background pixels is clear by comparing
Model-1 and Model-2. In the third and fourth column, the benefits from
edgelist and class labels can be found from the areas where red arrows point
to.

Table 1. Instance segmentation mask AP on SketchyScene. Model-2, Model-
3, and Model-4 are three models proposed by the work. AP (MS COCO
metric), AP50 and AP75 (PASCAL VOC metrics) are the same metrics as
those used in MaskRCNN.

Model
val test

AP AP50 AP75 AP AP50 AP75
Model-1 10.03 29.20 4.86 12.99 36.76 5.93
Model-2 63.01 79.97 68.18 62.32 77.15 66.76
Model-3 63.78 80.19 68.88 63.17 77.45 67.60
Model-4 64.38 79.24 69.10 58.55 71.31 62.29

commented sketch as input, and outputting a color image. In general,
the architecture of LBIE is similar to the RMI based architecture used
for object colorization of LUCSS. Both of these two architectures are
able to colorize an entire input sketch in a single step by implicitly
inferring the correspondence between language descriptions and
objects (or object parts). We therefore also include the RMI based
architecture shown in Figure 6, which takes as input a scene sketch
and a description of scene-level colorization requirement, and gen-
erates a color image in a singe step instead of two steps used by
LUCSS, as another baseline method. In the following paragraphs of
this section, these three comparison approaches are called LUCSS,
LBIE, and sRMI for short.

7.1.1 Data Collection.

Data collection for LUCSS: object colorization. We collected
three modalities of data to train the models of object colorization:
color object instance, edge map, and text description (caption). We
extracted color object instances and their edge maps from the 5,800
reference cartoon style images of SketchyScene. Figure 9 illustrates
how the training data was prepared. We first leveraged Mask-RCNN
trained on MS COCO to detect color object instances and then cut
them out of the reference images. For each instance, we fused the
filter responses of Hed [Xie and Tu 2015] and X-DoG [Winnemöller
2011] as the training edge map (object sketch). In total we collected

, Vol. 1, No. 1, Article . Publication date: September 2018.

LUCSS: Language-based User-customized Colorization of Scene Sketches • :9

3,739 sets of object examples, each set consisting of a caption au-
thored by crowd workers, a 192 × 192 color image, and a 192 × 192
edge map. The captions covered object instances from 20 categories,
namely, moon, sun, cloud, house, bench, road, bus, car, bird, people,
butterfly, cat, chicken, cow, dog, duck, sheep, tree, rabbit, and pig,
which describes object instances in 15 different colors. The number
of colors varies from one to three for each individual object instance
(e.g., there are two colors for a red bus with gray windows). We
further split the 3,739 sets of examples into two parts: 2,814 sets of
examples used for training data, 357 sets for validation, and 568 sets
for test.

A red bus with gray windows

A person in red
shirt and dark

gray pants

A person in
dark suit

A person in
green shirt

and brown pants

Fig. 9. Illustration of training data collection for object instance colorization.
Top row: a reference image from SketchyScene (left); filter response of
Hed [Xie and Tu 2015] and X-DoG [Winnemöller 2011] (middle); cut-out
color object instances (right). Bottom row: user-written descriptions of the
representative color object instances.

Data collection for LUCSS: background colorization. For
background colorization, we used the following three modalities of
training data: cartoon style color images, their captions, and color
foreground object instances with blank background (See the left-
most image of Figure 14 for an illustration). We used two types of
strategies to extract the training data from the reference images
of SketchyScene. The first one cut out objects from the reference
images with mask-RCNN, and changed the color of all the pixels
outside of the objects white. This strategy did not work well on
some reference images where some object instances could not be
detected. For these reference images, we used the other strategy:
using the boundary of an object instance in the scene sketch as the
boundary of the corresponding color object in the corresponding
reference image (the object correspondence can be obtained from
SketchyScene). We employed 5 workers to generate the captions.
For each set of examples, the color details of two / three compo-
nents, “sky", “land", and/or “background", were described. In total,
we collected 1,328 sets of training examples. We used 1,200 sets of
examples for training, the remaining 128 sets were equally split for
validation and test. All the images were resized to 768 × 768 pixels.

Data collection for sRMI and LBIE. Similar to the data collec-
tion for LUCSS, we collected three types of data for sRMI and LBIE:
(1) color images selected from the reference images of SketchyScene
(we selected the reference images which were in the training set of
SketchyScene and had the majority pixels belonging to the above-
mentioned 20 categories), (2) corresponding edge maps, and (3) cor-
responding captions. To collect the captions in scales, we developed
an on-line system to assist the crowd workers in generating captions
for cartoon scenes. To ensure the description style is close to that

generated by the captioning algorithm, we used a template-based
approach for caption generation. More specifically, each sentence
of a caption comes from a repository of caption templates, which
describes the instances and their corresponding quantities, colors,
and spatial relationship as Algorithm 1. In this way, We employed
24 workers and collected 1,328 sets of examples, 1,200 of which were
used for the training and the rest for validation.

Test data. We selected 100 scene sketches from the test set of
SketchyScene as the test data (the other scene sketches do not depict
reasonable scenes if the objects outside the selected 20 categories are
removed from the scene sketch). Each scene sketch we produced
had up to three captions (varying on different evaluation tasks).
Apart from being used to evaluate the colorization performance of
LUCSS, LBIE, and sRMI, this test data has also been used for the
experiments on the analysis of the components of LUCSS.

7.1.2 Experimental Settings. For object instance colorization, we
used a batch size of 2 and trained with 100K iterations. In the initial
phrase of the training, we used the ADAM optimizer [Kingma and
Ba 2014] and set the learning rate of generator at 0.0002 and that
of discriminator at 0.0001. After 50K iterations, we adjusted the
learning rate of discriminator to 0.0002. For background colorization,
we used batch size of 1 and trained with 100K iterations. We set
the initial learning rate for both the generator and discriminator at
0.0002 and reduced it by 75% after each 20K iterations. We set the
iteration number of LSTM at 15, the cell size of mLSTM at 512 for
both object instance and background colorization modules.

sRMI and LBIE.We trained 100K iterations for both sRMI and
LBIE. We set the initial learning rate of both generator and dis-
criminator at 0.0002 and reduce it by 75% after each 20K iterations
for sRMI. We set the iteration number of LSTM at 200, the cell
size of mLSTM at 128 for sRMI. The iteration numbers of LSTM in
LBIE were adapted to the input captions. We set other experimental
settings of LBIE by following [Chen et al. 2017b].

7.1.3 Comparison Results. We conducted two sets of experi-
ments to evaluate the performances of LUCSS, sRMI, and LBIE.

Single caption. In the first set of experiments, we compared
LUCSS, LBIE, and sRMI on the 100 scene sketches of the whole test
data. For each test scene sketch, we produced one caption (by re-
editing the results of captioning). Figure 10 shows the visual results
of these three competitors on some representative test examples.

Generally, LUCSS outperformed both LBIE and sRMI overwhelm-
ingly. LUCSS colorized both objects (e.g., the roads, houses, clouds,
moons, trees in the results), and backgrounds (the green land and
sky) with smooth colors, while LBIE and sRMI generated a lot of
color regions which covered more than one objects. sRMI relatively
performed better than LBIE in some cases. We take the results in the
third row of Figure 10 for example. sRMI colorized the sky and grass
with smooth blue and green respectively, while the color generated
by LBIE was mixed with multiple colors (e.g. white, yellow and
pink).

With respect to faithfulness, whichmeasures whether the coloriza-
tion follows the language instructions, LUCSS achieved significantly
better performance than LBIE and sRMI as well. We take the exam-
ple in the fourth row of Figure 10 to explain our observation. LUCSS

, Vol. 1, No. 1, Article . Publication date: September 2018.

:10 • Zou et al.

colorized all the clouds light gray, while LBIE colorized them into
different colors including white and green, and sRMI colorized them
into white, green and orange; LUCSS painted the lady red following
the caption, while LBIE painted her into blue and red gradient, and
sRMI colorized her with red hair and orange skirt. Relatively, sRMI
performed a little better than LBIE on some examples. For example,
sRMI can colorize the sky and grass in the third row of Figure 10
correctly, while LBIE failed to meet the demand of the caption.
The poor results of LBIE and sRMI may be mainly due to two

factors. First, both LBIE and sRMI did not achieve accurate instance
segmentation, which can be indicated by the tree at the most right
side (LBIE: white and red; sRMI: green and blue), and the person
(LBIE: blue skirt and red legs; sRMI: red hair, orange skirt and green
legs). In contrast, LUCSS achieved accurate instance segmentation,
since the boundaries of the resulting color objects were consistent
with those in the sketch. Second, either LBIE or sRMI did not achieve
accurate correspondence between the description and the objects.
We can see the evidence from the sun (LBIE: blue sun; sRMI: white).
In LUCSS, the correspondence is naturally obtained by the caption-
ing module.
Multiple captions. In the second set of experiment, we ran-

domly selected 30 examples from the test dataset and produced
three captions for each scene sketch. We then evaluated LUCSS,
LBIE, and sRMI on all the three captions for each scene sketch.
Some representative results are shown in Figure 11. The results of
LUCSS generally met the user-specified colorization requirements.
The results of LBIE on three different captions almost stayed the
same. Although sRMI can response to the changed captions in some
cases, it colored most objects in wrong colors. It indicate that both
LBIE and sRMI failed to obtain the correspondence between the
captions and objects. In [Chen et al. 2017b], LBIE showed the ability
to learn the correspondence between words and objects, which is
possibly because the captions in [Chen et al. 2017b] contain much
shorter sentences than these in this study (captions in our study
typically contain more than 6 sentences, much longer than two or
three sentences in [Chen et al. 2017b]).

7.2 Ablation Experiments
In this section, we design various experiments to analyze the two
major components of LUCSS.

7.2.1 Object Colorization.

LBIE versusMRU-RMI. In this set of experiment, we evaluated
the performance of two types of models, LBIE and MRU-RMI, for
object colorization. The test data contained 568 sets of examples
as discussed in the data collection section above. Each set of test
examples contained an object sketch and a corresponding caption.
LBIE is the same network as that used in the previous experiments.
MRU-RMI is also the same network as sRMI, which was used to
colorize a whole scene sketch in the previous experiments.
Figure 12 shows some representative results. It can be seen that

both LBIE and MRU-RMI can learn an implicit part-level segmenta-
tion and colorize the object parts with the colors instructed by the
captions (e.g., both LBIE and MRU-RMI assigned blue to the win-
dows of the bus). Relatively, MRU-RMI achieved better performance
on inferring the correspondence between words in the caption and

LUCSS LBIE sRMI

It's a sunny day. There is
a sun in the sky. Many
clouds are floating in the
air. A house is in the
middle. A tree is on the
right of the house. A tree
is on the left of the house.
All things are on grass.
There is a road.

It's a sunny day. There is a yellow sun in the sky. Many white clouds are floating in the air. A yellow house with white
roof is in the middle. A green tree is on the right of the house. A green tree is on the left of the house. All things are on
green grass. There is a yellow road. The sky is blue.

It's a cloudy day. Many
clouds are floating in the
air. A tree is on the right.
Four trees are on the left
of the right tree. A person
is on the left of the right
tree. All things are on
grass. There is a road.

It's a cloudy day. Many white clouds are floating in the air. A green tree is on the right. Four green trees are on the left
of the right tree. A person in red is on the left of the right tree. All things are on green grass. There is a light brown
road. The sky is gray.

It's a moonlit night.
There is a moon in the
sky. A house is in the
middle. A car is in front
of the house. Three trees
are on the left of the
house. Two trees are on
the right back of the car.
There is a road.

It's a moonlit night. There is a yellow moon in the sky. A orange house with light gray roof is in the middle. A yellow
car with black window is in front of the house. Three green trees are on the left of the house. Two green trees are on
the right back of the car. There is a orange road. The sky is blue and all things are on green grass.

It's a sunny day. There is
a sun in the sky. Many
clouds are floating in the
air. A tree is on the left.
Two trees are on the
right of the left tree. A
person is on the right of
the left tree. A dog is in
front of the right trees.

It's a sunny day. There is a orange sun in the sky. Many light gray clouds are floating in the air. A green tree is on the
left. Two green trees are on the right of the left tree. A person in red is on the right of the left tree. A light brown dog
is in front of the right trees. The sky is blue and all things are on green grass.

Fig. 10. LUCSS vs. LBIE vs. sRMI on various inputs. An input scene sketch
and the automatically generated caption are shown on the left for each set of
example. User edited captions are shown at the bottom of each colorization
result. Each row shows the results produced by the three competitors. More
results can be found in supplementary materials.

object parts. This can be told from the colorization results for the
roof of the house and the windows of the bus. Combining the results
in both Figure 12 and 11, we can see that MRU-RMI is powerful
for object-level sketch images and its performance would be signifi-
cantly degraded when the sketch image size goes up to a large-size
complex scene sketch. Moreover, for the face region of the person in
Figure 12, we can see that MRU-based network also outperformed
the atrous-convolution-based LBIE on the encoding of object-level
sketch image features (performance of MRU based network is signif-
icantly degraded when the complexity and the size of sketch image
increase).

MRU versus ResNet blocks versus Pix2Pix. In this set of exper-
iments, we evaluated three different types of backbones for the
encoder and decoder of the architecture used for object coloriza-
tion. The first type of backbone is MRU, which is used by Skec-
thyGAN[Chen and Hays 2018] as well as the encoder and decoder
for object colorization of LUCSS. ResNet denotes the residual block

, Vol. 1, No. 1, Article . Publication date: September 2018.

LUCSS: Language-based User-customized Colorization of Scene Sketches • :11

LUCSS LBIE sRMI

It's a moonlit night. There is a (yellow=>purple)
moon in the sky. Many (white=>blue) clouds are
floating in the air. A (yellow=>blue) car with
blue window is in the middle. Five green trees
are in front of the car. The sky is blue and all
things are on green grass.

LUCSS LBIE sRMI

It's a cloudy day. Many (blue=>white) clouds are
floating in the air. A (red=>yellow) house with black
roof is in the middle. A green tree is on the right of
the house. Two green trees are on the left of the
house. All things are on (green=>yellow) grass.
There is a (light brown=>black) road. The sky is
(blue=>gray).

LUCSS LBIE sRMI

A (light brown=>dark brown) bench is in the
middle. Three (green=>yellow) trees are behind the
bench. A (dark brown=>yellow) dog is on the right
front of the bench. A person in (orange shirt and
yellow pants=>yellow) is on the left front of the
bench. All things are on (green=>yellow) grass. The
sky is (blue=>gray).

Fig. 11. Colorization results by LUCSS, LBIE, and sRMI with two different sets of user-specified colorization requirements for each scene sketch. For each set
of comparison, an input scene sketch is at the bottom, with the corresponding caption. Text without underline is automatically generated, while underlined
text is added by users. Arrows in the parentheses represent the change of colorization requirements (text on the left side of the arrows correspond to the
results in the top row; text on the right side of the arrows correspond to the results in the bottom row).

MRU-RMI LBIE LBIE

A red house
with light
 grayroof

A yellow
bus with
blue window

A person
 in green

A buttlefly
with yellow
body and blue
wings

MRU-RMI

Fig. 12. Network architecture evaluation for object colorization: MRU-RMI
versus LBIE. MRU-RMI (shown in Figure 6) denotes the architecture used
by LUCSS for object colorization. It uses MRU backbone based encoder &
decoder and RMI based fusion model. LBIE is the model used in [Chen et al.
2017b]. Input scene sketches and language descriptions are shown on the
left of each example.

proposed by [He et al. 2016]. Pix2Pix denotes the convolution block
used by the encoder and decoder of [Isola et al. 2017]. For com-
parison purposes, we replaced the cascade blocks in Figure 6 with
ResNet/Pix2Pix, and produced results on all the 568 sets of test
examples.

MRU ResNet Pix2Pix

A red house
with dark
gray roof

A green bus
with blue
window

Fig. 13. Network backbone evaluation for object colorization : MRU versus
ResNet versus Pix2Pix. MRU based image encoder & decoder outperforms
both ResNet and Pix2Pix based image encoder & decoder.

In Figure 13, we show the results of two representative examples.
MRU achieved better performance than both Pix2Pix and ResNet.
Specifically, MRU generated clearer texture and object part bound-
aries compared to ResNet and Pix2Pix (e.g., see the window and
the body of the colorized bus). In the aspect of following language
instruction, the results of MRU are also superior to those of ResNet
and Pix2Pix. This also indicates that the whole network based on
MRU can infer more accurate correspondence between the caption
and image content using the image features extracted by MRU.

7.2.2 Background Colorization. In this section, we first investi-
gate the architecture of the GAN for the background colorization
task, and then study what kind of backbone is more appropriate for
this task.

LBIE versus ResNet-RMI. In this set of experiments, we com-
pared two types of architectures, which can be used for background
colorization. The first architecture is LBIE. The other is the architec-
ture discussed in Section 5.2. We call this architecture ResNet-RMI
in this section since the backbone of the generator uses ResNet
blocks. Both LBIE and ResNet-RMI were trained with 1,200 sketches
in the training dataset, and tested on the test dataset.
In Figure 14, we illustrate the results of LBIE and ResNet-RMI

on two sets of representative examples. Both LBIE and ResNet-RMI
successfully colorized the regions of sky and grass with the colors
specified in the captions. This indicates that the encoding modules
of image, text and feature fusion modules of LBIE and ResNet-RMI
work well. However, the results by ResNet-RMI were visually more
pleasing than LBIE. It may be caused by the fact that LBIE uses an
asymmetrical encoder-decoder architecture (the encoder of LBIE
uses atrous convolution while the decoder uses regular convolution).

MRU versus ResNet versus Pix2Pix. In this set of experiments,
we study which backbone network is more suitable for large-scale
image background colorization. We still used the three types of back-
bone network: MRU, ResNet, and Pix2Pix. Results on representative

, Vol. 1, No. 1, Article . Publication date: September 2018.

:12 • Zou et al.

ResNet-RMI LBIEInput forground

The sky
is blue
and all
things are
on green
grass

The sky
is White
and all
things are
on green
grass

Fig. 14. Network architecture evaluation for background colorization :
ResNet-RMI versus LBIE. It took as input the language descriptions on
the left, and images containing color foreground objects and blank back-
grounds. The reference images from which color foreground objects were
cut out are shown on the top left corner of each input image.

examples are shown in Figure 15. We can see ResNet outperforms
Pix2Pix in terms of visual effects, which can be explained by the
fact that ResNet is much deeper than Pix2Pix (a ResNet block has
three convolution layers while a Pix2Pix block only has a single
convolution layer). ResNet also has visually better results than MRU
(e.g., MRU generated some artifacts surrounding foreground ob-
jects, while ResNet doesn’t), mainly because MRU is specialized for
object-level sketches. When the MRU based network is used for a
large size of color image, its performance is degraded (we can get
the evidence by comparing the results in Figure 11 and Figure 12,
additional evidence can be seen in SketchyGAN[Chen and Hays
2018]).

Input foreground ResNet MRU Pix2Pix

The sky
is blue
and all
things are
on green
grass

The sky
is blue
and all
things are
on green
grass

Fig. 15. Network backbone evaluation for background colorization : ResNet
vs. MRU vs. Pix2Pix. ResNet outperforms both MRU and Pix2Pix when
colorizing blank backgrounds surrounding color foreground objects.

7.3 Human Evaluation
To further justify the captioning and colorization results of LUCSS,
we have designed and carried out two sets of user experiments:
faithfulness study and effectiveness study. We recruited 11 partici-
pants for the studies. All participants are undergraduates with no
prior knowledge of this project.

Each set of experiments covers the two sub-steps of LUCSS: object
colorization and background colorization. We did not conduct a
study for system level performance of LUCSS, LBIE, and sRMI (see
Section 7.1) because LUCSS obviously outperforms LBIE and LBIE
outperforms sRMI on all the examples of the test dataset.

LBIE

38.19% LBIE

29.87%

MRU-RMI

61.81% ResNet-RMI

70.13%

MRU

59.75%

MRU

14.21%

ResNet

10.21%

ResNet

54.10%

Pix2Pix

30.04%
Pix2Pix

31.69%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

LBIE VS MRU-RMI MRU VS ResNet VS Pix2Pix LBIE VS ResNet-RMI MRU VS ResNet VS Pix2Pix

Object colorization Background colorization

LBIE MRU-RMI ResNet-RMI MRU ResNet Pix2Pix

Fig. 16. Quantitative results for the faithfulness study. LUCSS uses the RMI
model in general, MRU backbone for object colorization, and ResNet blocks
for background colorization.

In the object colorization task, we randomly select 60 sketches
from 20 classes as the input (3 sketches per class) and compare the
results using two models: LBIE and MRU-RMI (our model). In the
background colorization task, we random select 20 scene sketches
as the input and compare the results via two models: LBIE and
ResNet-RMI (our model). In both tasks, we further the performance
of three backbones: MRU, ResNet blocks, and Pix2Pix.
In the faithfulness study, our goal is to evaluate whether the

colorization results are consistent with the text description. Each
participant was given the input caption with the corresponding
colorization results from one of the two models, or one of the three
backbones. We asked the participant to pick out the colorization
result which best fits the text description.

In the effectiveness study, we compared the overall visual quality
of the colorization results. Each participant was given the original
sketch with the corresponding colorization results from one of the
twomodels, or one of the three backbones.We asked the participants
to pick out the most visually pleasing color image for the sketch.
Overall, in each study, we have collected 11 × 20 × 3 = 660

trials for the object colorization task and 11 × 20 = 220 trials for
the background colorization task. For both studies, we compare
the selection rate of different models and backbones in Fig. 16 and
17. For both tasks, our MRU-RMI model and ResNet-RMI model
greatly outperform the LBIE model in user evaluation. Based on our
user evaluation, LUCSS is more faithful and produces more visually
pleasing results to users. For object colorization, the MRU backbone
stands out; while for background colorization, the ResNet backbone
outperforms the rest.

8 CONCLUSION, DISCUSSION, AND FUTURE WORK
Understanding low-level scene sketches containingmultiple sketched
objects is a rarely studied problem. This problem is very challenging,
especially when objects occlude each other in the depicted scene.
The sparse nature of scene sketches leads to inferior performance of
current models, even advanced ones, that are designed for natural
images. In this work, we proposed a system called LUCSS to study
how we can make machines understand complex scene sketches by
adapting the existing powerful deep models for natural images to

, Vol. 1, No. 1, Article . Publication date: September 2018.

LUCSS: Language-based User-customized Colorization of Scene Sketches • :13

LBIE

29.57%
LBIE

26.36%

MRU-RMI

70.43%
ResNet-RMI

73.64%

MRU

56.48%

MRU

25.68%

ResNet

15.33%
ResNet

60.29%

Pix2Pix

28.20%

Pix2Pix

14.03%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

LBIE VS MRU-RMI MRU VS ResNet VS Pix2Pix LBIE VS ResNet-RMI MRU VS ResNet VS Pix2Pix

Object colorization Background colorization

LBIE MRU-RMI ResNet-RMI MRU ResNet Pix2Pix

Fig. 17. Quantitative results for the effectiveness study. LUCSS uses the
RMI model in general, MRU backbone for object colorization, and ResNet
blocks for background colorization.

sketches, as well as how this understanding can benefit related ap-
plications. We have focused language-based interactive colorization
of scene sketches.

The current performance of LUCSS is limited by the segmentation
performance since the highest mask AP is near 60%. It is necessary
to propose more powerful algorithms by incorporating the charac-
teristics of scene sketches with advanced models. Another limitation
is that our current human-computer interaction needs improvement,
though it is currently a practical solution considering the challenges
of instance segmentation and inferring accurate correspondence
between language descriptions and objects in the scene. As these
challenging problems are solved by new datasets and more powerful
models, LUCSS has the potential to become a far more mature sys-
tem that could potentially generate fine-grained sketch colorization
like generating a boy with ruddy cheek, or animating objects in a
scene sketch by human speech commands.
Image synthesis often has problems when data is left out. Since

LUCSS is limited by training data, LUCSS generates cartoon images
rather than natural images. Complex sentences are input to LUCSS
which then processes them, filling in any missing detail such as
omitted colors, and outputs an image.

This raises a question: is it possible to synthesize user-customized
scene-level natural images by adding user-drawn sketches to the
images of MS COCO’s dataset to corroborate the existing language
descriptions?
LUCSS has great application prospects in the field of child edu-

cation, accessibility, and media production. For instance, by trans-
lating the auto-generated caption text to human voice, LUCSS has
the potential to read scene sketches to children and the blind. Via
the interactive colorization system, both children and adults could
create their own cartoon story books. In addition, the involved tech-
niques in LUCSS may be useful in CAD and Virtual Reality (VR)
industries. With text (voice) commands, LUCSS unlocks the poten-
tial to easily change the color schemes of a sketch scene and virtual
environments.

REFERENCES
Xiaobo An and Fabio Pellacini. 2010. User-Controllable Color Transfer. In Computer

Graphics Forum, Vol. 29. Wiley Online Library, 263–271.

Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen
Gould, and Lei Zhang. 2018. Bottom-Up and Top-Down Attention for Image Cap-
tioning and Visual Question Answering. In CVPR.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein Generative
Adversarial Networks. In Proceedings of the 34th International Conference on Machine
Learning, Vol. 70. 214–223.

Anurag Arnab and Philip H. S. Torr. 2017. Pixelwise Instance Segmentation with a
Dynamically Instantiated Network. In CVPR. 879–888.

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. 2017. SegNet: A Deep
Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans.
Pattern Anal. Mach. Intell. 39, 12 (2017), 2481–2495.

Raffaella Bernardi, Ruket Cakici, Desmond Elliott, Aykut Erdem, Erkut Erdem, Nazli
Ikizler-Cinbis, Frank Keller, Adrian Muscat, and Barbara Plank. 2016. Automatic
Description Generation from Images: A Survey of Models, Datasets, and Evaluation
Measures. arXiv preprint arXiv:1601.03896 (2016).

Huiwen Chang, Ohad Fried, Yiming Liu, Stephen DiVerdi, and Adam Finkelstein. 2015.
Palette-based photo recoloring. ACM Transactions on Graphics (TOG) 34, 4 (2015),
139.

Guillaume Charpiat, Matthias Hofmann, and Bernhard Schölkopf. 2008. Automatic
Image Colorization Via Multi-modal Predictions. In Proceedings of the 10th European
Conference on Computer Vision: Part III (ECCV). 126–139.

Hwann-Tzong Chen, Huang-Wei Chang, and Tyng-Luh Liu. 2005. Local discriminant
embedding and its variants. In Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, Vol. 2. IEEE, 846–853.

Jianbo Chen, Yelong Shen, Jianfeng Gao, Jingjing Liu, and Xiaodong Liu. 2017b. Lan-
guage Based Image Editing with Recurrent Attentive Models. CoRR abs/1711.06288
(2017).

Liang-Chieh Chen, Alexander Hermans, George Papandreou, Florian Schroff, Peng
Wang, and Hartwig Adam. 2017a. MaskLab: Instance Segmentation by Refining
Object Detection with Semantic and Direction Features. CoRR abs/1712.04837 (2017).

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L
Yuille. 2016. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,
Atrous Convolution, and Fully Connected CRFs. arXiv:1606.00915 (2016).

Tao Chen, Ming-Ming Cheng, Ping Tan, Ariel Shamir, and Shi-Min Hu. 2009.
Sketch2Photo: internet image montage. ACM Trans. Graph. 28, 5 (2009), 124:1–
124:10.

Wengling Chen and James Hays. 2018. SketchyGAN: Towards Diverse and Realistic
Sketch to Image Synthesis. CoRR abs/1801.02753 (2018).

Xinlei Chen and C. Lawrence Zitnick. 2014. Learning a Recurrent Visual Representation
for Image Caption Generation. CoRR abs/1411.5654 (2014).

Z. Cheng, Q. Yang, and B. Sheng. 2015. Deep Colorization. In ICCV. 415–423.
Abhishek Das, Harsh Agrawal, Larry Zitnick, Devi Parikh, and Dhruv Batra. 2017.

Human Attention in Visual Question Answering: Do Humans and Deep Networks
Look at the Same Regions? Computer Vision and Image Understanding 163 (2017),
90–100.

Jia Deng, Wei Dong, Richard Socher, LiJia Li, Kai Li, and FeiFei Li. 2009. ImageNet: A
large-scale hierarchical image database. In CVPR.

A. Deshpande, J. Rock, and D. Forsyth. 2015. Learning Large-Scale Automatic Image
Colorization. In ICCV. 567–575.

Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini
Venugopalan, Kate Saenko, and Trevor Darrell. 2014. Long-term Recurrent Con-
volutional Networks for Visual Recognition and Description. CoRR abs/1411.4389
(2014).

Mathias Eitz, James Hays, and Marc Alexa. 2012a. How do humans sketch objects?
ACM Trans. Graph. 31, 4 (2012), 44–1.

Mathias Eitz, James Hays, and Marc Alexa. 2012b. How Do Humans Sketch Objects?
ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4 (2012), 44:1–44:10.

Kevin Frans. 2017. Outline Colorization through Tandem Adversarial Networks. arXiv
preprint arXiv:1704.08834 (2017).

Ross B. Girshick. 2015. Fast R-CNN. CoRR abs/1504.08083 (2015).
Yagmur Güçlütürk, Umut Güçlü, Rob van Lier, and Marcel A. J. van Gerven. 2016.

Convolutional Sketch Inversion. CoRR abs/1606.03073 (2016).
David Ha and Douglas Eck. 2017. A neural representation of sketch drawings. arXiv

preprint arXiv:1704.03477 (2017).
Bharath Hariharan, Pablo Andres Arbelaez, Ross B. Girshick, and Jitendra Malik. 2014.

Simultaneous Detection and Segmentation. In ECCV. 297–312.
Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross B. Girshick. 2017. Mask R-CNN.

In ICCV. 2980–2988.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning

for Image Recognition. In CVPR. 770–778.
Seunghoon Hong, Dingdong Yang, Jongwook Choi, and Honglak Lee. 2018. Inferring

Semantic Layout for Hierarchical Text-to-Image Synthesis. CoRR abs/1801.05091
(2018).

YiChin Huang, YiShin Tung, JunCheng Chen, SungWen Wang, and JaLing Wu. 2005.
An Adaptive Edge Detection Based Colorization Algorithm and Its Applications.
In Proceedings of the 13th Annual ACM International Conference on Multimedia
(MULTIMEDIA ’05). 351–354.

, Vol. 1, No. 1, Article . Publication date: September 2018.

:14 • Zou et al.

Zhe Huang, Hongbo Fu, and Rynson W. H. Lau. 2014. Data-driven segmentation and
labeling of freehand sketches. ACM Trans. Graph. 33, 6 (2014), 175:1–175:10.

Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. 2016. Let There Be Color!:
Joint End-to-end Learning of Global and Local Image Priors for Automatic Image
Colorization with Simultaneous Classification. ACM Trans. Graph. 35, 4 (2016).

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-Image
Translation with Conditional Adversarial Networks. CVPR (2017).

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.
CoRR abs/1412.6980 (2014).

P. Kovesi. 2012. MATLAB and Octave Functions for Computer Vision and Image
Processing. (2012). Available from: <http://www.peterkovesi.com/matlabfns/>.

Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. 2016. Learning Rep-
resentations for Automatic Colorization. CoRR abs/1603.06668 (2016). http:
//arxiv.org/abs/1603.06668

C. Ledig, L. Theis, F. HuszÃąr, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A.
Tejani, J. Totz, Z. Wang, and W. Shi. 2017. Photo-Realistic Single Image Super-
Resolution Using a Generative Adversarial Network. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Anat Levin, Dani Lischinski, and Yair Weiss. 2004. Colorization Using Optimization.
ACM Trans. Graph. 23, 3 (Aug. 2004), 689–694.

Xiaodan Liang, Yunchao Wei, Xiaohui Shen, Jianchao Yang, Liang Lin, and Shuicheng
Yan. 2015. Proposal-free Network for Instance-level Object Segmentation. CoRR
abs/1509.02636 (2015).

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick,
James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick.
2014. Microsoft COCO: Common Objects in Context. CoRR abs/1405.0312 (2014).

Chenxi Liu, Zhe Lin, Xiaohui Shen, Jimei Yang, Xin Lu, and Alan L. Yuille. 2017a. Recur-
rent Multimodal Interaction for Referring Image Segmentation. CoRR abs/1703.07939
(2017).

Yifan Liu, Zengchang Qin, Zhenbo Luo, and Hua Wang. 2017b. Auto-painter: Car-
toon Image Generation from Sketch by Using Conditional Generative Adversarial
Networks. CoRR abs/1705.01908 (2017).

Yifan Liu, Zengchang Qin, Zhenbo Luo, and Hua Wang. 2017c. Auto-painter: Car-
toon Image Generation from Sketch by Using Conditional Generative Adversarial
Networks. (05 2017).

Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully convolutional networks
for semantic segmentation. In CVPR. 3431–3440.

Qing Luan, Fang Wen, Daniel Cohen-Or, Lin Liang, Ying-Qing Xu, and Heung-Yeung
Shum. 2007. Natural image colorization. In Proceedings of the 18th Eurographics
conference on Rendering Techniques. Eurographics Association, 309–320.

Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Zhiheng Huang, and Alan Yuille. 2015. Deep
Captioning with Multimodal Recurrent Neural Networks (m-RNN). ICLR (2015).

Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor Darrell, and Alexei Efros.
2016. Context Encoders: Feature Learning by Inpainting. In CVPR.

Yingge Qu, Tien-Tsin Wong, and Pheng-Ann Heng. 2006a. Manga Colorization. ACM
Trans. Graph. 25, 3 (2006).

Yingge Qu, Tien-Tsin Wong, and Pheng-Ann Heng. 2006b. Manga colorization. In ACM
Transactions on Graphics (TOG), Vol. 25. ACM, 1214–1220.

Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised Representa-
tion Learning with Deep Convolutional Generative Adversarial Networks. CoRR
abs/1511.06434 (2015).

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and
Honglak Lee. 2016. Generative Adversarial Text to Image Synthesis. In Proceedings
of The 33rd International Conference on Machine Learning, Vol. 48. 1060–1069.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015a. Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks. In Advances in Neural
Information Processing Systems (NIPS).

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015b. Faster R-CNN: Towards
Real-time Object Detection with Region Proposal Networks. In NIPS. 91–99.

Patsorn Sangkloy, Jingwan Lu, Chen Fang, Fisher Yu, and James Hays. 2017a. Scribbler:
Controlling Deep Image Synthesis with Sketch and Color. In CVPR. 6836–6845.

Patsorn Sangkloy, Jingwan Lu, Chen Fang, Fisher Yu, and James Hays. 2017b. Scribbler:
Controlling deep image synthesis with sketch and color. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Vol. 2.

Rosália G. Schneider and Tinne Tuytelaars. 2014. Sketch Classification and
Classification-driven Analysis Using Fisher Vectors. ACM Trans. Graph. 33, 6 (Nov.
2014), 174:1–174:9.

Rosalia G. Schneider and Tinne Tuytelaars. 2016. Example-Based Sketch Segmentation
and Labeling Using CRFs. ACM Trans. Graph. 35, 5 (2016), 151:1–151:9.

Evan Shelhamer, Jonathan Long, and Trevor Darrell. 2016. Fully Convolutional Net-
works for Semantic Segmentation. CoRR abs/1605.06211 (2016).

Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi, and Ferenc Huszár.
2016. Amortised MAP Inference for Image Super-resolution. CoRR abs/1610.04490
(2016).

Zhenbang Sun, ChanghuWang, Liqing Zhang, and Lei Zhang. 2012a. Free Hand-Drawn
Sketch Segmentation. In ECCV. 626–639.

Zhenbang Sun, Changhu Wang, Liqing Zhang, and Lei Zhang. 2012b. Sketch2Tag:
automatic hand-drawn sketch recognition. In ACM Multimedia. 1255–1256.

Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. 2016. Pixel Recurrent
Neural Networks. CoRR abs/1601.06759 (2016).

Domonkos Varga, Csaba Attila Szabo, and Tamas Sziranyi. 2017. Automatic Cartoon
Colorization Based on Convolutional Neural Network. In CMBI.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2016. Show and
Tell: Lessons learned from the 2015 MSCOCO Image Captioning Challenge. CoRR
abs/1609.06647 (2016).

Changhu Wang, Jun Zhang, Bruce Yang, and Lei Zhang. 2011. Sketch2Cartoon: Com-
posing Cartoon Images by Sketching. In ACM MultiMedia. 789–790.

Fang Wang, Le Kang, and Yi Li. 2015. Sketch-based 3D shape retrieval using Convolu-
tional Neural Networks. In CVPR. 1875–1883.

Tomihisa Welsh, Michael Ashikhmin, and Klaus Mueller. 2002. Transferring Color to
Greyscale Images. ACM Trans. Graph. 21, 3 (July 2002), 277–280.

Holger Winnemöller. 2011. XDoG: Advanced Image Stylization with eXtended
Difference-of-Gaussians. In Eurographics Symposium on Non-Photorealistic Ani-
mation and Rendering (NPAR ’11). 147–156.

Wenqi Xian, Patsorn Sangkloy, Jingwan Lu, Chen Fang, Fisher Yu, and James Hays.
2017. TextureGAN: Controlling Deep Image Synthesis with Texture Patches. CoRR
abs/1706.02823 (2017).

S. Xie and Z. Tu. 2015. Holistically-Nested Edge Detection. In ICCV. 1395–1403.
Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan Salakhut-

dinov, Richard S. Zemel, and Yoshua Bengio. 2015. Show, Attend and Tell: Neural
Image Caption Generation with Visual Attention. CoRR abs/1502.03044 (2015).

Kun Xu, Kang Chen, Hongbo Fu, Wei-Lun Sun, and Shi-Min Hu. 2013. Sketch2Scene:
sketch-based co-retrieval and co-placement of 3D models. ACM Trans. Graph. 32, 4
(2013), 123:1–123:15.

Kun Xu, Yong Li, Tao Ju, Shi-Min Hu, and Tian-Qiang Liu. 2009. Efficient affinity-based
edit propagation using kd tree. In ACM Transactions on Graphics (TOG), Vol. 28.
ACM, 118.

Zhicheng Yan, Hao Zhang, Baoyuan Wang, Sylvain Paris, and Yizhou Yu. 2016. Auto-
matic Photo Adjustment Using Deep Neural Networks. ACM Trans. Graph. 35, 2
(2016).

Chen Yao, Xiaokang Yang, Jia Wang, Song Li, and Guangtao Zhai. 2010. Patch-driven
colorization. Optical Engineering 49, 1 (2010), 017001.

L. Yatziv and G. Sapiro. 2006. Fast image and video colorization using chrominance
blending. IEEE Transactions on Image Processing 15, 5 (2006), 1120–1129.

Raymond A. Yeh, Chen Chen, Teck-Yian Lim, Mark Hasegawa-Johnson, and Minh N.
Do. 2016. Semantic Image Inpainting with Perceptual and Contextual Losses. CoRR
abs/1607.07539 (2016).

Taizan Yonetsuji. 2017. Paints Chainer. https://github.com/pfnet/PaintsChainer. (2017).
Qian Yu, Yongxin Yang, Feng Liu, Yi-Zhe Song, Tao Xiang, and Timothy M. Hospedales.

2017. Sketch-a-Net: A Deep Neural Network that Beats Humans. International
Journal of Computer Vision 122, 3 (2017), 411–425.

Han Zhang, Tao Xu, and Hongsheng Li. 2017. StackGAN: Text to Photo-Realistic Image
Synthesis with Stacked Generative Adversarial Networks. In ICCV. 5908–5916.

Jianhui Zhang, Yilan Chen, Lei Li, Hongbo Fu, and Chiew-Lan Tai. 2018. Context-based
Sketch Classification. In Expressive 2018.

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. 2016.
Pyramid Scene Parsing Network. CoRR abs/1612.01105 (2016).

Luowei Zhou, Chenliang Xu, Parker Koch, and Jason J Corso. 2016. Image Caption Gen-
eration with Text-Conditional Semantic Attention. arXiv preprint arXiv:1606.04621
(2016).

Changqing Zou, Qian Yu, Ruofei Du, Haoran Mo, Yi-Zhe Song, Tao Xiang, Chengying
Gao, Baoquan Chen, and Hao Zhang. 2018. SketchyScene: Richly-Annotated Scene
Sketches. In ECCV.

, Vol. 1, No. 1, Article . Publication date: September 2018.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Image Segmentation
	2.2 Sketch Understanding
	2.3 Image Captioning
	2.4 Scene Sketch Based Applications
	2.5 Image Colorization
	2.6 Image Generation with GANs

	3 System Overview
	4 segmentation and captioning
	4.1 Instance Segmentation
	4.2 Captioning

	5 Colorization
	5.1 Object Instance Colorization
	5.2 Background Colorization

	6 Segmentation Evaluation
	7 Colorization Evaluation
	7.1 Main Results
	7.2 Ablation Experiments
	7.3 Human Evaluation

	8 Conclusion, Discussion, and Future Work
	References

