
ORC Layout: Adaptive GUI Layout with
OR-Constraints

Yue Jiang
Department of Computer Science

University of Maryland, College Park, MD, USA
yuejiang@cs.umd.edu

Ruofei Du
Google LLC, San Francisco, CA &

University of Maryland, College Park, MD, USA
me@duruofei.com

Christof Lutteroth
Department of Computer Science

University of Bath, Bath, United Kingdom
c.lutteroth@bath.ac.uk

Wolfgang Stuerzlinger
School of Interactive Arts + Technology (SIAT)
Simon Fraser University, Vancouver, BC, Canada

w.s@sfu.ca

(b) ORC Layout(a) two flow layouts nested in a grid

Figure 1: Examples of GUIs combining elements of grid and flow layouts, which can only be realized with ORC layouts. Both
(a) and (b) show the results before and after resizing the window. (a) shows a traditional solution with two flow layouts nested
in a grid. It looks irregular since the original sizes of the widgets in the toolbars are not the same. Using ORC layouts in (b), we
can add constraints that cross-cut the GUI hierarchy, ensuring that the tool buttons all have the same size and hence consistent
appearance.

ABSTRACT
We propose a novel approach for constraint-based graphical
user interface (GUI) layout based on OR-constraints (ORC)
in standard soft/hard linear constraint systems. ORC layout
unifies grid layout and flow layout, supporting both their
features as well as cases where grid and flow layouts indi-
vidually fail. We describe ORC design patterns that enable
designers to safely create flexible layouts that work across
different screen sizes and orientations. We also present the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
CHI 2019, May 4–9, 2019, Glasgow, Scotland Uk
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5970-2/19/05. . . $15.00
https://doi.org/10.1145/3290605.3300643

ORC Editor, a GUI editor that enables designers to apply
ORC in a safe and effective manner, mixing grid, flow and
new ORC layout features as appropriate. We demonstrate
that our prototype can adapt layouts to screens with dif-
ferent aspect ratios with only a single layout specification,
easing the burden of GUI maintenance. Finally, we show that
ORC specifications can be modified interactively and solved
efficiently at runtime.

CCS CONCEPTS
•Human-centered computing User interface toolk-
its.

KEYWORDS
GUI builder, layout manager, constraint-based layout, visual
interface design, visual programming

ACM Reference Format:
Yue Jiang, Ruofei Du, Christof Lutteroth, andWolfgang Stuerzlinger.
2019. ORC Layout: Adaptive GUI Layout with OR-Constraints. In
CHI Conference on Human Factors in Computing Systems Proceedings

https://doi.org/10.1145/3290605.3300643

(CHI 2019), May 4–9, 2019, Glasgow, Scotland Uk. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3290605.3300643

1 INTRODUCTION
Automatically computed layouts are widely used in many
applications, including webpages, graphical user interfaces
(GUIs), documents, slides, andmobile apps.WYSIWYG (“what
you see is what you get”) GUI editors enable designers to
create layouts by defining the positions and sizes of wid-
gets, as well as specifying how a layout adapts to changes,
through layout models. Grid layout models such as grid-bag
can adjust the relative size of widgets, while keeping mutual
alignments intact. Flow layout models can break widgets into
new rows or columns, but are limited in the way widgets
can be aligned. Constraint-based layout models, the most
powerful option, are becoming widespread and can be used
to specify any grid layout, can align widgets across different
groups, and relax constraints between aligned widgets to
enable more flexibility. For example, Apple’s AutoLayout
[28] supports adaptive interfaces on devices ranging from
desktops to smartphones. CSS’s Flex(ible) Box1, widely sup-
ported in web browsers, applies constraints for dynamically
fitting the content and solving alignment problems.

Despite their power, current constraint-based layout mod-
els have limitations. First, they do not support flow layouts.
Second, for GUIs to work well in both portrait and landscape
orientations and on small as well as large screens, separate
layout specifications have to be created for each case and ac-
tivated on demand. Current constraint-based layout models
are not flexible enough to deal with all such changes directly,
which increases the workload of the designer: several layout
specifications have to be created and maintained. During the
evolution of a GUI, designers then have to manually synchro-
nize changes between different layout specifications. If all
cases could be covered in a single layout specification, this
could make GUI design more efficient and less error-prone.
Specifying flexible layouts with constraints is not easy,

and specifications are typically formulated as a linear pro-
gramming problem, through a system of linear equations
and inequalities, which are either hard or soft constraints.
A dedicated solver then calculates the position and size of
each widget. A specification can be ambiguous and lead to
unpredictable results, or be conflicting and have no result
at all. Such problems may be “hidden” in a specification and
only show in some cases, e.g., for a particularly small screen.

In this paper, we propose ORC layouts – a novel approach
to constraint-based layout that supports OR-constraints in a
standard soft/hard linear constraint system. AnOR-constraint
is a disjunction of multiple constraints (only one part needs
to be true to satisfy the OR-constraint) where the whole

1CSS Flexible Box: https://w3schools.com/css/css3_flexbox.asp

OR-constraint is a hard constraint and each part is a soft
one. Our method allows designers to specify a layout that
can adapt to drastically different screen sizes and orienta-
tions using a single layout specification. A GUI can then be
adapted to changes at runtime without having to consider
several separate specifications, avoiding inefficiencies and
inconsistencies. ORC layout also unifies the – so far separate
– grid and flow layout models, addressing both of their short-
comings. Additionally, it offers some entirely new features
that are currently unsupported by other layout models, such
as optional widgets.
ORC layouts can be constructed interactively with our

ORC Editor. It enables designers to instantiate templates for
the ORC layout patterns presented here, and adjust them by
modifying their parameters. The ORC editor then automati-
cally maintains all low-level constraints, so designers do not
need to deal with them directly.

Figure 1 (b) shows an example that combines elements of
grid and flow layouts, only achievable through ORC layouts.
On a large screen, the GUI has a toolbar at the top and one
on the left, with an edit pane taking up most of the space. For
a small screen, the toolbar at the top can break into two rows
and the left one into two columns, using a horizontal and a
vertical flow layout. While similar behaviour can be achieved
with two flow layouts nested in a grid, the results would look
different if the original sizes of the toolbar widgets are not
the same (Figure 1 (a)). With OR-constraints we can cross-cut
the GUI hierarchy, ensuring that the tool buttons all have
the same size and hence consistent appearance. Many other
layout functionalities can be realized with OR-constraints,
including balanced flow layouts and layout alternatives.

Contributions
We contribute two new ideas for constraint-based GUI lay-
out:

(1) We present ORC layouts, a new powerful way to ex-
press GUI layouts, which seamlessly integrate OR-
constraints into standard constraint systems for layout
specifications. Various layout patterns are supported.
One of the biggest benefits is that OR-constraints can
unify flow layouts and grid layouts, which opens up
options for layouts that work across screen rotations
and cases where grid and flow layouts individually fail.

(2) We present a new approach to solving constraint sys-
tems with soft/hard linear and OR-constraints at inter-
active rates. When resizing a canvas at runtime, our
algorithm solves the constraint system based on the
previous results. Thus, we can solve a system with 175
constraints in less than a second for operations such
as insert, delete, move, and resize.

https://doi.org/10.1145/3290605.3300643
https://w3schools.com/css/css3_flexbox.asp

2 RELATEDWORK
Our research draws from several related ideas in GUI lay-
out, such as systems of soft/hard linear constraints, mini-
mum/preferred/maximum constraints, CSS, layout solvers,
and GUI builders, which we outline in the following.

Layout Models
Layout models are widely used to specify the layout of user
interfaces in a way that is (to a certain degree) size indepen-
dent. Layout managers then determine at runtime the actual
GUI layout based on the constraints and the context, such
as window size. See also an overview of early approaches
[22, 23]. Simple layout models, such as group, table, grid, and
grid-bag layouts, align widget groups horizontally or verti-
cally and often nest layout containers hierarchically. While
intuitive, these models often implicitly add more constraints
than desired, which introduces maintenance issues [19, 41].
They cannot align widgets across a hierarchy, a problem
that constraints can address [20]. Similar to text layout, flow
layouts break widgets into new rows or columns. Object-
oriented models such as Amulet [25] allow developers to
combine some properties of flow and grid layouts program-
matically.

More modern layout models use constraints, through vary-
ing constraint types and explicit or implicit constraint specifi-
cation. Linear constraint systems [2, 3, 5, 13, 18] are powerful
and used today fairly widely, e.g., in Apple’s Auto Layout
[28]. They use sets of equalities and inequalities to specify
absolute and relative alignment of widgets as well as absolute
and relative widget sizes. Unlike simpler layout models, lin-
ear constraint systems have a well-understood mathematical
basis, whichmakes results less dependent on implementation
details. Linear constraint systems can be combined, allowing
reuse of existing specifications in a modular manner [20].
Most layout models can be reduced to linear constraint sys-
tems [34, 42], with the exception of flow layouts. Our work
addresses this shortcoming.
Except for flow layouts, existing layout models support

only static widget topologies: widget cannot change their
position relative to widgets they are aligned with. Flow lay-
outs enable such repositioning in a limited manner: widgets
can overflow into a new row or column. Our ORC layouts
permit designers to specify flexible layouts that mix grid
and flow layouts and seamlessly integrate multiple layout
alternatives.

Soft/Hard Linear Constraint Systems
Soft/hard linear constraint systems can differentiate between
crucial layout characteristics (e.g., that a widget must have
a certain size to be usable) and merely desirable ones (e.g.,
that two buttons should have the same size). Two types

of constraints express this: hard constraints, which must
be satisfied, and soft ones, which can be neglected when
it is impossible to determine a solution that can satisfy all
constraints in the system. Further, not all soft constraints
should be treated equally, as some soft constraints are more
important than others [4]. Hence, a weight is used to rank
each soft constraint, with higher weights being equivalent
to higher priorities. Hard constraints can be considered as
soft ones with infinite weight.

The intrinsic sizes of each widget are typically defined by
min/max/preferred size constraints. The minimum usually
depends on the contents of the widget and the maximum
is normally limited by the window or screen size, while the
preferred size is pre-defined, often by the designer of the
GUI editor, or customized by the UI designer in the editor.

Layout Solvers
Various solvers exist for linear constraint-based GUI specifi-
cations [2, 3, 5, 13, 38]. Many of them use linear or quadratic
programming [2, 3, 5, 18], i.e., use a linear or quadratic objec-
tive function to take constraint priorities into account. Such
objective functions penalize deviations from desired posi-
tions and sizes, which can improve aesthetics upon resizing
[40]. Yet, these solvers will try to satisfy all constraints simul-
taneously, subject to priorities in case of conflicts. But they
cannot express alternatives, as they support only conjunc-
tions of constraints (AND), but do not permit disjunctions
(OR).

Z3 [6] is a very powerful satisfiability modulo theory
(SMT) solver. It supports linear constraints with priorities,
other types of constraints, and first-order logic, and is thus
able to solve specifications with disjunctive constraints. Us-
ing incremental solving, it can perform better if the current
constraint system is similar to the previous one. Z3 has pre-
viously been suggested for solving formalized CSS layout
specifications [27] and to support layout editing with direct
manipulation of individual constraints [14]. Yet, Z3 has not
been used for general GUI/widget layoutwithOR-constraints
before.

GUI Builders/Editors
GUI builder tools support the interactive specification of
widgets and layouts and directly generate the correspond-
ing layout models and constraints. GUI builders need to
enable designers to directly and quickly specify complex,
flexible layouts, while preventing layout errors. Their set
of editing operations determine the range of layouts and
resize behaviours that can be specified by a designer. Core
challenges include: 1) powerful layout models support con-
straints which can be difficult to visualize intuitively, and 2)
layout specifications may contain errors that manifest only
for particular GUI sizes.

FormsVBT [1] used both textual and visual layout repre-
sentations, with parallel editing. Gilt [12] introduced reusable
styles and visual tabs to simplify layout and appearance spec-
ification. Opus [15] supported visual manipulation of simple
layout constraints. Gleicher [11] proposed a differential edit-
ing approach, where constrained graphical objects can be
manipulated directly and changes are continuously reflected
in all objects. Unidraw [33] showed how direct manipulation
can be implemented by simulating widgets.
Specifying individual layout constraints can be cumber-

some. Thus, some have proposed to infer simple constraints
“by demonstration”. Rockit [17] infers constraints on 2D
graphical objects based on their locations. Peridot [24], Druid
[31], and Lapidary [37] generate code based on user interface
drawings and example interactions.

Recent GUI builders have focused on creating appropriate
layout constraints quickly and robustly through direct ma-
nipulation. The Intui builder [30] allows designers to quickly
specify the resize behaviour of a GUI by aligning parts of the
GUI and designating them either as rigid “struts” or flexible
“springs”. The Auckland Layout Editor [39] enables design-
ers to specify a constraint-based layout, while automatically
keeping the specification solvable and free of overlap. This
work also used multiple previews to directly visualize how a
layout looks at distinct window sizes. GUI programming by
manipulation [14] also permits editing of individual layout
constraints. Designers can interactively disable and enable
individual constraints to resolve resulting ambiguities.

None of the above GUI builders allow designers to specify
layouts with OR-constraints.

Layout Alternatives and Alternative Generators
Linear constraint layouts provide some flexibility for resizing
a GUI. However, if a GUI needs to be rendered on a large va-
riety of devices, then a common solution is for the designers
to define several layout alternatives, and to select dynami-
cally among them, depending on the rendering context, (e.g.,
available screen size, resolution, and aspect ratio). This ap-
proach is common for mobile apps [29, 36] and “responsive
web design” [21]. For mobile apps, the class of device is used
to choose among separate layout specifications, while for
responsive web design CSS media queries can be specified
to apply different layout alternatives, e.g., based on screen
size. While flexible, the CSS framework does not offer the
same capabilities as ORC layouts, without constructing lay-
outs programmatically with JavaScript. For example, CSS
layouts often use a “fluid grid”, i.e., a rigid grid-like layout in
which elements can flow over into separate rows. Yet, one
cannot direct particular widgets to flow in a specific way, as
in the connected layout pattern (Figure 5). Unlike the ORC
approach, a GUI designer still has to manually specify several

exact layout alternatives as well as the rules that determine
when each alternative should be used.

To automatically improve the user experience based on
device properties, tasks and user requirements, some work
proposed GUI adaptation, i.e., the automatic modification of
GUIs based on specific criteria [35]. Fogarty et al. [7] used
cost functions to generate improved GUIs. SUPPLE [8, 9] uses
optimization to generate adapted user interfaces, e.g., by re-
placing widgets or grouping them differently in containers,
and also to personalize interfaces for users with disabilities
[10]. Automatic layout generation tools generate proposed
alternatives for a given layout [32, 36]. Then, designers only
need to choose and modify the generated suggestions. A
complementary approach is adaptive layout templates [16],
which also can generate layout alternatives. Overall, design-
ers are often limited to the (few) alternatives that such tools
provide.
In contrast to previous work, our work aims to enable

designers to directly specify flexible GUI layouts. With ORC
layouts, designers can leave it up to the solver to determine
when to apply a (or a combination of) layout alternative(s),
based on screen space or other desirable criteria. Designers
can also prioritize, combine, and conditionally use alterna-
tives. For example, a good ORC layout for a smallish medium-
sized screen might combine alternatives for medium and
small screens, e.g., compress only the toolbar but not other
UI parts. ORC layouts also can synchronize layout changes
with constraints, e.g., to ensure that several rows/columns
are broken simultaneously and in a similar manner to achieve
a balanced appearance (Figure 6), even if they are not next
to each other.

3 OR-CONSTRAINED (ORC) LAYOUTS
Here we describe how OR-constrained (ORC) layouts are
defined, edited, and solved.

ORC Layout Specifications
In ORC layouts, and as in other constraint-based layouts, the
min/max/preferred size of each widget and the relationships
among widgets are all defined by constraints. In addition to
hard and soft constraints, the constraint system for an ORC
layout also contains OR-constraints. OR-constraints enable
the designer to specify multiple alternative constraints, only
one of which needs to be met, e.g., a toolbar that is on the left
side in landscape but is repositioned to the top (or bottom)
of the screen in portrait mode. The designer only needs
to specify both (or any number of) alternative constraints
joinedwith anOR-clause. Thus, with OR-constraints, a single
layout specification can support many different screen sizes
and aspect ratios.

We define OR-constraints through a mixture of hard and
soft constraints. A whole ORC clause has a hard constraint,

while each part of the OR-constraint has an independent
soft constraint. This ensures layout specifications are always
feasible. Some individual soft-constrained parts of an OR-
constraint can be given higher priority than others through
weights, which defines the level of importance or priority of
that part. For example, in the OR-constraint “to the right OR
at the beginning of the next row”, we likely prefer to place
the current widget to the right of the previous one. Thus, we
attach a larger, e.g., double, weight to “to the right” part.

ORC Editor
The ORC Editor looks and works similar to other constraint-
based GUI builders, with a canvas, palette, and properties
panel [39]. It supports safe use of ORC layout patterns (see
Section 4) through parameterised templates. Layouts can be
edited interactively in the canvas through direct manipu-
lation, or using the properties panel, e.g., for template in-
stantiation and modification. Designers can declaratively
choose templates for widgets and widget containers and
specify their parameters; the editor automatically creates
and maintains the corresponding constraints. The template-
based approach simplifies GUI maintenance compared to
programming approaches [22], and a single flexible speci-
fication instead of several alternatives can ease authoring
by reducing redundancy. As in ALE [39], users can still add
and edit individual constraints, but we expect this to be used
infrequently. Similar to ALE, the editor automatically solves
the constraint system after each change and keeps the layout
solvable by detecting, highlighting, and disabling conflicting
constraints.

Solving a System with OR-Constraints
The naïve approach to solve a system with OR-constraints
is to try all solutions. For very small systems, this might be
feasible but does not scalewell: for everyOR-constraints with
two parts, there are two potential solutions. This number
grows exponentially, e.g., with only ten OR-constraints there
are 1024 potential solutions that need to be evaluated. The
naïve strategy quickly becomes impractical.
OR-constrained systems are a subset of SMT (Satisfiabil-

ity Modulo Theory) problems. Instead of an explicit solver
algorithm, we thus use Z3 [6], a very efficient SMT solver.
Z3 typically scored highly in the yearly SMT competitions2
during the last decade. One of the key insights of our work
is that SMT solvers can be used to solve GUI layouts with
OR-constraints. Z3 has the ability to solve specifications with
disjunctive sets of constraint alternatives, which makes it
an ideal tool to solve a system of constraints that includes
OR-constraints. Z3 chooses constraints by considering all
possible combinations of alternatives and evaluating their

2SMT competitions: smtcomp.org

Figure 2: An ORC layout with a single layout specification
for horizontal and vertical rotation. Classic layouts, such as
flowand grid, can either not specify the change in alignment
between the widgets depending on the window aspect ratio,
or cannot ensure consistent sizes across the different widget
groups.

appropriateness for the given situation with an objective
function. The solver tries to satisfy as many constraints as
possible, based on their assigned priorities. We have not ex-
perienced Z3 convergence failures. How constraints interact
with each other can be controlled in two ways: 1) by setting
constraint priorities, e.g., prefer A over alternative A2, or 2)
by combining constraints in different ways using Boolean
operators, e.g., (A AND B) OR (A2 AND B2) will force the
solver to pick alternative branches in the same way.
Re-solving the entire constraint system iteratively after

each change of a layout can be time-consuming and may, e.g.,
slow down the speed of interactive GUI editing. To produce
layout results dynamically at runtime, computations need
to be efficient. By reusing parts of the previous solution, Z3
supports incremental solving, i.e., it produces a result faster
if the current constraint system is similar to the previous
one. Instead of re-creating the whole constraint system after
each adjustment in the layout, the ORC Editor removes obso-
lete constraints from the previously solved system and adds
new ones. This re-solves only part of the new constraint
system based on the previous results and achieves better
performance.

ORC Layouts for Screen Rotation
OR-constraints can unify flow layouts and grid layouts, which
opens up options for layouts to work across screen rotations
and cases where grid and flow layouts individually fail. This
enables designers to seamlessly deal with screen rotations
with a single layout specification. For instance, neither grid
nor flow layouts can deal with the case in Figure 2 through a
single layout specification. Although the general change in
topology may be achieved using two nested flow layouts, the
flow layouts cannot ensure that the widgets are consistently

smtcomp.org

Figure 3: A practical use case of ORC layouts for dealing
with different device orientations. Note that the whole lay-
out changes from horizontal to vertical while the inner lay-
out of the control panel changes the opposite way.

aligned as shown. There are three high-level widgets (labeled
areas) in the layout: CHI 2019, block, and CHI 2018, denoted
as [a], [b], and [c] respectively. Inside block [b], we have
three low-level widgets: [1], [2], and [3]. Using ORC, the
alignments in the two alternatives (horizontal and vertical)
can be specified separately using constraints and then com-
bined with OR. In contrast to other layout methods, ORC
can also ensure consistent sizes across the two groups [a],
[b], [c] and [1], [2], [3] as follows:((

[b]height =
3∑
i=1

[i]height

)
∧

(
[b]width = max

i=1,2,3
[i]width

))
OR

((
[b]width =

3∑
i=1

[i]width

)
∧

(
[b]height = max

i=1,2,3
[i]height

))
The two soft constraints above specify the correct alignment
for the horizontal case (Figure 2 left) or the vertical case
(right), respectively. A more practical use case of an ORC
layout for device rotation is shown in Figure 3. This lay-
out contains a menu, a file explorer panel, a main view for
code editing, and a control panel with widgets for searching,
replacing, and console debugging. It uses OR-constraints
similar to the previous example.

4 ORC LAYOUT PATTERNS
ORC layout covers a superset of the most popular layout
mechanisms, allowing designers to “blend” them. To achieve
this in a controlled manner, we propose patterns as basic
building blocks that can be combined into layouts of arbitrary
complexity. For example, ORC layout patterns can specify
constraints for cross-cutting (Figures 1), connecting (Figure
5), further constraining (Figures 6 and 10) and re-positioning
sub-layouts (Figures 2-4 and 7), or replacing them entirely
(Figure 8). Furthermore, multiple patterns can be combined
(Figure 9). Here we present the constraints for several of our
new layout patterns. To our knowledge no current layout

mechanism or editor can deal with the shown examples,
except through multiple layout specifications or code.

Mixed Layout Specifications
Previous layout managers often focus on solving a single
type of layout. The use of OR-constraints makes it possible to
mix different types of constraints and layout specifications.
For example, a “to the right OR at the start of the next row
below” constraint between each successive pair of widgets
enables ORC layouts to unify flow and grid-bag layouts.With
such a unified layout, the designer only needs to create a
single layout specification for both landscape and portrait
modes.
In the following, we assume that all widgets are ordered

in the layout. We denote the i-th widget as [i] and the set
of all widgets asW . For each widget [i] ∈W , we define its
left & top position, width, and height as [i]left, [i]top, [i]width,
[i]height respectively. The soft constraint “to the right”,CRiдht ,
is formulated as:

CRiдht := ([i]left = [i − 1]left + [i − 1]width)

∧

(
[i]top = [i − 1]top

)
The soft constraint “at the start of the next row below”,

CNextRow , is formulated as:
CNextRow := ([i]left = 0)∧(

[i]top ≥ [j]top + [j]height ,∀j < i, [j] ∈W
)
∧(∨

j

[i]top = [j]top + [j]height ,∀j < i, [j] ∈W

)
The OR-constraint CHorizontal expressing horizontal flow

layout is then a hard constraint (or one with very high
weight) with a disjunction of the two soft constraints “to the
right” and “at the start of the next row below”:

CHorizontal := CRiдht OR CNextRow
Vertical flow layouts use corresponding OR-constraints for
“to the bottom OR at the start of the next column”. With
ORC, the choice of using a horizontal or vertical flow layout
can even be left to the constraint solver for flexibility by
combining both alternatives with an OR, as illustrated in
Figure 4.

Cross-Cutting Layout Pattern
The cross-cutting layout pattern achieves a consistent ap-
pearance in a GUI by adding constraints that cross-cut the
boundaries between the different sub-layouts of a GUI. This
is illustrated in Figure 1 (b), where each widget in the top
toolbar has the constraint “to the right OR at the beginning
of next row” and each in the left toolbar has the constraint
“to the bottom OR at the beginning of next column”. The tool-
bars automatically transform into multiple rows/columns

Figure 4: The horizontal window uses a “to the right OR at
the start of the next row”, while the vertical one has an OR-
constraint “to the bottom OR at the start of the next col-
umn”.

Figure 5: Connected layout pattern: the left and top toolbars
are connected so widgets can move between them.

as the screen gets smaller, while cross-cutting constraints
ensure that the widgets in the toolbars have sizes consistent
with one another.

Connected Layout Pattern
The connected layout pattern is a generalization of different
layouts, such as horizontal and vertical flow, which emerges
by connecting the sub-layouts of a GUI so that widgets can
move between them. This can be achieved by refining the
constraints that move widgets into a new position based
on available space, as discussed for flow layouts in the sec-
tion about mixed layout specifications. For example, the
horizontal and vertical toolbar areas in Figure 5 are con-
nected to create a better fit in the available screen space.
The most suitable number of widgets in the top toolbar is
tbest := window_width /widдet_width. If the original num-
ber of widgets in the top toolbar t is smaller than tbest , then
the first tbest − t widgets in the left toolbar are moved to

Figure 6: Balanced flow pattern: as the toolbar widgets are
broken into rows, each row can only have 1, 2, 3, or 6widgets.

Figure 7: Alternatives positions pattern: the toolbar can be
placed on top OR to the left.

the top one. Otherwise, the first t − tbest widgets in the top
toolbar are moved to the left.

Balanced Flow Pattern
Conventional flow layouts do not ensure that their rows or
columns are balanced with respect to the contained widgets.
ORC layouts support balanced layout alternatives and com-
bine them with an OR. For example, when the widgets in
the toolbar in Figure 6 are broken into rows, each row can
only have a predefined number of widgets, which is a factor
of the number of the widgets in the toolbar. We compute
the set of all the factors of the number of the widgets in the
toolbar. According to the window size, the top toolbar has
a preferred size and number of rows. Choosing the closest
number c in the factor set, t/c widgets are placed in each
row.

Alternative Positions Pattern
With a simple OR-constraint, we can define alternative posi-
tions for widgets or entire sub-layouts. For example, the top
toolbar in Figure 7 can be changed to be a left toolbar when
the screen size changes or vice versa.

Alternative Widgets Pattern
If a window does not have enough space, some widgets can
have alternative representations. For instance, List Boxes can
be replaced by Option Menus. This is done by putting both
of them into the layout, next to each other, but making one
of them invisible by giving it a size of 0. We express this
through constraints as follows, where the weight of (1) > (2):

(size(ListBox) = pre f Size(ListBox)
∧size(OptionMenu) = 0) (1)
OR (size(ListBox) = 0
∧size(OptionMenu) = pre f Size(OptionMenu)) (2)

Optional Layout Pattern
When a window is made smaller, optional widgets might
disappear, like in the ribbon menu in MS Word. Similar to
the alternative widgets pattern, the OR-constraint “the wid-
get has zero size OR nonzero size” realizes this functionality.
For example, each widget in the ribbon menu is assigned a
priority through its weight (Figure 8, Figure 9). Thus, when
the window gets smaller, widgets with lower weights disap-
pear before those with higher weights. We use the following
constraints to implement this: size = pre f Size OR size = 0.
For widgets with high priority, size = pre f Size is a hard

constraint (or one with a very large weight). For widgets with
medium priority, size = pre f Size is a soft constraint with a
large weight A, and size = 0 is a soft constraint with a small
weight B. For widgets with low priority, size = pre f Size is
a soft constraint with a large weight C , and size = 0 is a soft
constraint with a small weight D, where weight A > weight
C and weight B < weight D.

The example in Figure 8 shows both the widget alternative
and optional functionalities. It demonstrates how the ribbon
menu changes as the window gets smaller. Widgets in the
ribbon menu disappear according to their weights as the
window gets smaller. In the bottom row, list boxes and radio
buttons are replaced by option menus to save space.

Flowing Widgets around a Fixed Area
An OR-constraint system can even deal with the case of
flowing widgets around a fixed area, e.g., similar to placing
a picture on a page of text and flowing text around it. As
shown in Figure 10 (b), with simple flow layouts a fixed
widget would necessitate splitting the window into 4 parts
and widgets would flow in each part separately, which results
in an undesirable outcome. However, with OR-constraints,
we can flow widgets around a fixed area without splitting
the window into parts. The OR-constraint system can solve
the whole window at the same time to arrive at a much more
pleasing result and even resize widgets to avoid “ragged
right” margins.

high priority

medium priority

low priority

(b)

(a)

(c)

Figure 8: Optional layout and alternative widgets pattern ex-
ample. (a) shows a full-sizedwindowwith all thewidgets vis-
ible. (b) shows a medium-sized window where widgets with
low weights disappear. (c) further reduced window size so
that widgets with medium and low weights disappear. Both
radio buttons and the list box are replaced by option menus
to save space.

If a widget is above or below the fixed area, then it has
the OR-constraint “to the right of the previous widget OR at
the beginning of next row” as usual. When a row of widgets
overlaps with the rows occupied by the fixed area, this will
cause a row break to prevent overlap. In essence, the fixed
widget cuts the rows into two parts, as in the connected
layout pattern. Algorithm 1 shows how we implemented
this layout. The algorithm consists entirely of conditionals
and constraints with varying weights, and can therefore be
translated into Boolean logic as supported by ORC.W → L
is shorthand for a position constraint that places a widgetW
into location L. “if A then B” equals the constraint “NOT(A)
OR B”.

Document layout methods also address this case, but with
completely different methods. For example, Adaptive Grid-
Based Document Layout [16] uses adaptive layout templates
to implement similar functionality, by defining sets of con-
straints for different cases. With ORC layout, all cases can
be solved through a single constraint system.

5 IMPLEMENTATION
We implemented our prototypical ORC Editor in Python 2.7
with Tkinter, a GUI library for Python, and the Z3-solver,
where we used the default WMax optimization algorithm for
weighted soft constraint problems [26].

6 EVALUATION
Efficiency plays a vital role in solving constraint-based sys-
tems. We measured the execution time of the ORC layout
solver for different layout editing operations (insert, delete,
move, and resize) with different numbers of constraints. For
each condition, we measure the average execution time of 10

Figure 9: A more complex example combining the alternative position pattern for the toolbar at the top and the widgets at the
bottom, the balanced flow and optional layout patterns for the toolbar, and the alternative widgets pattern for the list boxes.

(a) Flow layout with OR-constraints (b) Flow layout without OR-constraints

Figure 10: (a) Flow layout with OR-constraints. The position
of the “CHI 2019” image is fixed while all the other wid-
gets flow around it. The size of the flowing widgets adjusts
to fill up the available space. (b) Flow layout without OR-
constraints.

runs. We conduct the experiments on a laptop with an Intel
i5 CPU. As shown in Table 1, with fewer than 175 constraints
our method can efficiently solve the most common cases in
less than one second on this average machine. For deploy-
ment, one could cache solved layouts for typical devices to
improve performance. Note that for insert, delete, and move,
our ORC Editor incrementally updates the constraint system,
which saves approximately 40%-86% of the computation time
for 5 widgets, and around 30%-48% of the time for 20 widgets.
In contrast, a resize operation typically requires a complete
rebuild of the entire constraint system, which is costlier.
Although ORC solving does not yet work at real-time

interactive speeds, layouts can be solved during app loading,
pre-computed in a background thread, and cached for typical
screen sizes. For more complex cases, our method could also
take advantage of hierarchical layouts to efficiently solve
a new layout in under one second. For example, smaller
widgets could be contained in larger bounding boxes, and
the layout of individual boxes could be solved efficiently in
parallel.

Expert Review
We initially considered a comparison to see howORC layouts
perform relative to other methods. Yet, to our knowledge,
there are currently no GUI layout systems that can create
a single easily “rotatable” layout that works for non-trivial
examples. Thus, we started by exploring if designers could
work with ORC layouts by performing a qualitative evalu-
ation with nine participants (four female, aged from 21 to
48). All participants were professional UI designers or soft-
ware engineers from technical companies with substantial
experience with GUI layouts and responsive web design.

Procedure. We first showed participants PowerPoint slides
with all the figures in this paper and asked them to follow the
sequence of edit operations for those figures to familiarize
them with our ORC Editor. All the participants found this
easy to follow. One stated that “ I think anyone who has
ever used a responsive web app will find it fairly intuitive.”
It took only about five minutes for them to finish trying
all the edit operations. After having experienced the ORC
Editor, most participants were curious about the difference
between “responsive design” and ORC layouts. When told
that our layout method enables the designer to create only
a single layout specification for multiple screen sizes and
orientations, a UI designer stated that “Seems like a great
idea. [ORC layouts] could save us a lot of time.”
Then we asked them to create several layouts contain-

ing 8-12 widgets in a single container that work well in
landscape and portrait mode with the ORC Editor, and in-
terviewed them about their opinions, including how well
layouts worked for different screen orientations. In general,
they quickly grasped how ORC layout patterns work and
were able to create new, rotatable layouts in about 10-20
minutes.

Interviews. In post-hoc interviews, participants expressed
generally very positive feelings towards ORC layouts. They
found ORC layout editing user-friendly, and many compared
their experience with ORC favorably with their day-to-day
experience of building responsive UIs. They identified that

Algorithm 1: Flowing widgets around a fixed area.
1 first widget→ top left corner
2 if overlap then
3 first widget→ after fixed area
4 end
5 if current widget is above or below fixed area then
6 current_left = prev_right OR current→ next_row

(hard)
7 end
8 if current widget shares any row with the fixed area then

// break over rows to prevent overlap

9 if there is enough space for current widget in this row
then

10 current_top = prev_top (hard)
11 if enough space between previous widget and

fixed widget then
12 current_left = prev_right (hard)
13 end
14 else
15 current_left = fixed_right (hard)
16 end
17 end
18 else
19 current→ next_row
20 if enough space between previous widget and

fixed area then
21 current_left = left_boundary (hard)
22 end
23 else
24 current_left = fixed_right (hard)
25 end
26 end
27 end
28 current_top = prev_top (soft with high weight)
29 current→ next_row (soft with low weight)

this new layout method complements existing ones and in-
dicated that “[ORC layouts] allows me to design layouts that
are otherwise hard to do. The results of the layout did meet
my expectation[s]”. One stated that “Usually we need to care-
fully design different layouts for phones, tablets, and PCs. But
[ORC] has great potential to automate [such] repetitive work.
[ORC layouts] makes it so much simpler to deal with [mobile
device] layouts, as I then need to maintain only one layout”.
Some usability issues of the ORC Editor prototype were crit-
icized, but participants also recognized that integration into
an industry-strength GUI editor would address such issues.

Table 1: Average solving times with ORC layout (in sec-
onds) for different number of constraints and different op-
erations. (“Resize” in this table means resizing specific wid-
gets.) In our experiments, we used horizontal flow layout
with the OR-constraint “to the right OR at the beginning of
next line” and the sizes of widgets were determined by their
min/pref/max constraints.

7 DISCUSSION
As demonstrated above, OR-constraints enable new ways
to specify GUI layouts that can automatically adapt to dif-
ferent screen orientations and sizes. Relative to previously
presented layout methods, OR-constraints can express more
extensive re-arrangements of widgets. In particular, OR-
constraints are able to combine the power of both flow and
grid-based layout specifications. A big benefit of ORC lay-
outs is that this method enables the designer to create only
a single layout specification that works for multiple screen
sizes and orientations. This means that designers do not need
to create and maintain multiple layout specifications for each
GUI screen.

We explain the trade-off between power and simplicity in
the ORC editor as follows: When a user specifies a layout for
a GUI container, the system creates the corresponding con-
straints with default parameters. Through our pre-defined
constraint layout patterns, we substantially reduce the com-
plexity presented to the user. Users then only need to modify
the parameters and select different options for a layout func-
tionality (but not the constraints themselves) to meet more
specialized requirements as desired. By automatically keep-
ing layouts solvable [39], we keep layout editor usability
high, as this effectively prevents users from over-specifying
a layout.

It is advantageous to create a single layout specification for
multiple different (e.g., portrait and landscape) form factors.
Similar to challenges in software engineering, it is easy for
multiple alternative GUI layout specs to get out of “sync”, e.g.,
when widgets get added/changed/removed. While there may
be other ways to deal with this situation, it typically requires
decomposing a GUI into many individual building blocks. A
single spec is easier to maintain and to keep consistent.

Limitations
One issue with ORC layouts is that for more complex situa-
tions a hierarchy may be necessary to solve the constraint
system. While a single constraint system offers potentially
more flexibility, some naïve forms of prioritization of high-
level vs. low-level widgets can make a constraint system
time-consuming to solve. As GUI designers are used to de-
compose complex layouts into a hierarchy we currently do
not see this as a major issue. We acknowledge that usabil-
ity, layout, and aesthetic design principles are not directly
supported by the work reported here. If such aspects are
expressible as constraints, they can be specified as part of an
ORC layout. Yet, we consider this outside the scope of our
current work.

8 CONCLUSION
In this paper, we presented ORC layouts, a novel GUI lay-
out method that adds OR-constraints to standard constraint-
based layout specifications. ORC layout unifies grid layout
and flow layout, offering new possibilities for flexible GUIs
that are not supported by any other layout method. Through
the use of an efficient SMT solver, ORC layout constraint
systems with soft, hard and OR-constraints can typically be
solved at interactive rates. We envision that our new layout
method could be widely applied in modern web design, doc-
ument format, and app layout. We plan to open-source our
code for future research on OR-constraint layouts.

Z3 is a very general constraint solver. Likely, this general-
ity introduces some computation overhead. As our work is
only the first exploration of ORC layouts, we envision that
future layout solvers will improve performance further. Thus,
we see potential for new, more specialized solving algorithms
that can deal with OR-constraints in a more efficient manner.

Acknowledgements
This work builds on initial explorations of OR-constrained
layouts by Navid Mohaghegh and the last author.

REFERENCES
[1] Gideon Avrahami, Kenneth P Brooks, and Marc H Brown. 1989. A

Two-View Approach to Constructing User Interfaces. ACM SIGGRAPH
Computer Graphics 23, 3 (1989), 137–146. https://doi.org/10.1007/
354054742_40

[2] Greg J. Badros, Alan Borning, and Peter J. Stuckey. 2001. The Cas-
sowary Linear Arithmetic Constraint Solving Algorithm. ACM Trans.
Comput.-Hum. Interact 8, 4 (2001), 267–306. https://doi.org/10.1145/
504704.504705

[3] Thomas Bill, Bertil Lundell, JohnAlanMcDonald, andMichael Sannella.
1992. Bricklayer: Window Layout Using Linear Programming. Technical
Report. University of Washington, New York, NY, USA.

[4] Alan Borning, Bjorn Freeman-Benson, and Molly Wilson. 1992. Con-
straint Hierarchies. LISP and Symbolic Computation 5, 3 (1992), 223–270.
https://doi.org/10.1007/978-3-642-85983-_4

[5] Alan Borning, Kim Marriott, Peter Stuckey, and Yi Xiao. 1997. Solv-
ing Linear Arithmetic Constraints for User Interface Applications.

In Proceedings of the 10th Annual ACM Symposium on User Inter-
face Software and Technology. ACM, Banff, Alberta, Canada, 87–96.
https://doi.org/10.1145/263407.263518

[6] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: an Efficient SMT
Solver. In Proceedings of the Theory and Practice of Software, 14th In-
ternational Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’08/ETAPS’08). Springer-Verlag, Berlin,
Heidelberg, 337–340. https://doi.org/10.1007/978-3-540-78800-_24

[7] James Fogarty and Scott E. Hudson. 2003. GADGET: a Toolkit for
Optimization-Based Approaches to Interface and Display Generation.
In Proceedings of the 16th Annual ACM Symposium on User Interface
Software and Technology (UIST ’03). ACM, New York, NY, USA, 125–134.
https://doi.org/10.1145/1186562.1015789

[8] Krzysztof Z. Gajos, Daniel S. Weld, and Jacob O. Wobbrock. 2010.
Automatically Generating Personalized User Interfaces With Supple,
In Proceedings of the 9th International Conference on Intelligent User
Interfaces. Artif. Intell 174, 12-13, 910–950. https://doi.org/10.1016/j.
artint.2010.05.005

[9] Krzysztof Z. Gajos, Daniel S. Weld, and Jacob O. Wobbrock. 2010.
Automatically Generating Personalized User Interfaces With Supple.
Artif. Intell 174, 12-13 (2010), 910–950. https://doi.org/10.1145/964442.
964461

[10] Krzysztof Z. Gajos, Jacob O. Wobbrock, and Daniel S. Weld. 2008. Im-
proving the Performance ofMotor-Impaired UsersWith Automatically-
Generated, Ability-Based Interfaces. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (CHI ’08). ACM, New
York, NY, USA, 1257–1266. https://doi.org/10.1145/1357054.1357250

[11] Michael Gleicher. 1993. A Graphics Toolkit Based on Differential
Constraints. In Proceedings of the 6th Annual ACM Symposium on User
Interface Software and Technology. ACM, New York, NY, USA, 109–120.
https://doi.org/10.1145/168642.168653

[12] Osamu Hashimoto and Brad A. Myers. 1992. Graphical Styles for
Building Interfaces by Demonstration. In Proceedings of the 5th Annual
ACM Symposium on User Interface Software and Technology (UIST ’92).
ACM, New York, NY, USA, 117–124. https://doi.org/10.1145/142621.
142635

[13] Hiroshi Hosobe. 2000. A Scalable Linear Constraint Solver for User
Interface Construction. In Proceedings of the 6th International Con-
ference on Principles and Practice of Constraint Programming (CP ’02).
Springer-Verlag, Berlin, Heidelberg, 218–232. https://doi.org/10.1007/
3-540-45349-_17

[14] Thibaud Hottelier, Ras Bodik, and Kimiko Ryokai. 2014. Programming
by Manipulation for Layout. In Proceedings of the 27th Annual ACM
Symposium on User Interface Software and Technology (UIST ’14). ACM,
NewYork, NY, USA, 231–241. https://doi.org/10.1145/2642918.2647378

[15] Scott E. Hudson and Shamim P. Mohamed. 1990. Interactive Specifi-
cation of Flexible User Interface Displays. ACM Trans. Inf. Syst 8, 3
(1990), 269–288. https://doi.org/10.1145/98188.98201

[16] Charles Jacobs, Wilmot Li, Evan Schrier, David Bargeron, and David
Salesin. 2003. Adaptive Grid-Based Document Layout. In ACM SIG-
GRAPH 2003 Papers (SIGGRAPH ’03). ACM, New York, NY, USA, 838–
847. https://doi.org/10.1145/1201775.882353

[17] Solange Karsenty, James A. Landay, and Chris Weikart. 1993. Inferring
Graphical Constraints With Rockit. In Proceedings of the Conference on
People and Computers VII (HCI’92). Cambridge University Press, New
York, NY, USA, 137–153. https://doi.org/10.1007/3-540-58601-_91

[18] Christof Lutteroth, Robert Strandh, and Gerald Weber. 2008. Domain
Specific High-Level Constraints for User Interface Layout. Constraints
13, 3 (2008), 307–342. https://doi.org/10.1145/1496976.1496977

[19] Christof Lutteroth and GeraldWeber. 2006. User Interface LayoutWith
Ordinal and Linear Constraints. In Proceedings of the 7th Australasian

https://doi.org/10.1007/354054742_40
https://doi.org/10.1007/354054742_40
https://doi.org/10.1145/504704.504705
https://doi.org/10.1145/504704.504705
https://doi.org/10.1007/978-3-642-85983-_4
https://doi.org/10.1145/263407.263518
https://doi.org/10.1007/978-3-540-78800-_24
https://doi.org/10.1145/1186562.1015789
https://doi.org/10.1016/j.artint.2010.05.005
https://doi.org/10.1016/j.artint.2010.05.005
https://doi.org/10.1145/964442.964461
https://doi.org/10.1145/964442.964461
https://doi.org/10.1145/1357054.1357250
https://doi.org/10.1145/168642.168653
https://doi.org/10.1145/142621.142635
https://doi.org/10.1145/142621.142635
https://doi.org/10.1007/3-540-45349-_17
https://doi.org/10.1007/3-540-45349-_17
https://doi.org/10.1145/2642918.2647378
https://doi.org/10.1145/98188.98201
https://doi.org/10.1145/1201775.882353
https://doi.org/10.1007/3-540-58601-_91
https://doi.org/10.1145/1496976.1496977

User Interface Conference - Volume 50 (AUIC ’06). Australian Computer
Society, Inc., Darlinghurst, Australia, Australia, 53–60. https://doi.
org/10.1007/978-1-4842-2662-_20

[20] Christof Lutteroth and Gerald Weber. 2008. Modular Specification of
GUI Layout Using Constraints. In 2008. ASWEC 2008. 19th Australian
Conference on Software Engineering. IEEE, New York, NY, USA, 300–309.
https://doi.org/10.1109/ASWEC.2008.4483218

[21] Ethan Marcotte. 2011. Responsive Web Design. A book apart.
[22] Brad Myers, Scott E. Hudson, Randy Pausch, and Randy Pausch. 2000.

Past, Present, and Future of User Interface Software Tools. ACM
Trans. Comput.-Hum. Interact 7, 1 (2000), 3–28. https://doi.org/10.
1177/154193120004400206

[23] Brad A. Myers. 1995. User Interface Software Tools. ACM Transactions
on Computer-Human Interaction (1995). https://doi.org/10.1145/200968.
200971

[24] Brad A. Myers and William Buxton. 1986. Creating Highly-Interactive
and Graphical User Interfaces by Demonstration. SIGGRAPH Comput.
Graph 20, 4 (1986), 249–258. https://doi.org/10.1145/15922.15914

[25] Brad A Myers, Richard G McDaniel, Robert C Miller, Alan S Ferrency,
Andrew Faulring, Bruce D Kyle, Andrew Mickish, Alex Klimovitski,
and Patrick Doane. 1997. The Amulet Environment: New Models for
Effective User Interface Software Development. IEEE Transactions on
Software Engineering 23, 6 (1997), 347–365.

[26] Robert Nieuwenhuis and Albert Oliveras. 2006. On SAT Modulo The-
ories and Optimization Problems. In Theory and Applications of Sat-
isfiability Testing - SAT 2006. Springer, Berlin, Heidelberg, 156–169.
https://doi.org/10.1007/1181494_18

[27] Pavel Panchekha and Emina Torlak. 2016. Automated Reasoning
for Web Page Layout. SIGPLAN Not 51, 10 (2016), 181–194. https:
//doi.org/10.1145/2983990.2984010

[28] Erica Sadun. 2013. iOS Auto Layout Demystified. Addison-Wesley
Professional, Boston, US.

[29] Alireza Sahami Shirazi, Niels Henze, Albrecht Schmidt, Robin Gold-
berg, Benjamin Schmidt, and Hansjörg Schmauder. 2013. Insights Into
Layout Patterns of Mobile User Interfaces by an Automatic Analysis of
Android Apps. In Proceedings of the 5th ACM SIGCHI Symposium on En-
gineering Interactive Computing Systems (EICS ’13). ACM, Gothenburg,
Sweden, 275–284. https://doi.org/10.1145/3197231.3197249

[30] Adriano Scoditti and Wolfgang Stuerzlinger. 2009. A New Layout
Method for Graphical User Interfaces. In Science and Technology for
Humanity (TIC-STH), 2009 IEEE Toronto International Conference. IEEE,
Toronto, ON, Canada, 642–647. https://doi.org/10.1016/j.infsof.2015.
10.005

[31] Gurminder Singh, Chun Hong Kok, and Teng Ye Ngan. 1990. Druid:
a System for Demonstrational Rapid User Interface Development. In
Proceedings of the 3rd Annual ACM SIGGRAPH Symposium on User
Interface Software and Technology (UIST ’90). ACM, New York, NY,
USA, 167–177. https://doi.org/10.1145/97924.97943

[32] Nishant Sinha and Rezwana Karim. 2015. Responsive Designs in a
Snap. In Proceedings of the 2015 10th Joint Meeting on Foundations of

Software Engineering. ACM, Bergamo, Italy, 544–554. https://doi.org/
10.1145/2786805.2786808

[33] John M Vlissides and Steven Tang. 1991. A Unidraw-Based User
Interface Builder. In Proceedings of the 4th Annual ACM Symposium
on User Interface Software and Technology. ACM, Hilton Head, South
Carolina, 201–210. https://doi.org/10.1145/120782.120804

[34] Gerald Weber. 2010. A Reduction of Grid-Bag Layout to Auckland
Layout. In Proceedings of the 2010 21st Australian Software Engineering
Conference (ASWEC ’10). IEEE Computer Society, Washington, DC,
USA, 67–74. https://doi.org/10.1109/ASWEC.2010.38

[35] Daniel S. Weld, Corin Anderson, Pedro Domingos, Oren Etzioni,
Krzysztof Gajos, Tessa Lau, and Steve Wolfman. 2003. Automati-
cally Personalizing User Interfaces. In Proceedings of the 18th Inter-
national Joint Conference on Artificial Intelligence (IJCAI’03). Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 1613–1619.
http://dl.acm.org/citation.cfm?id=1630659.1630944

[36] Brad Vander Zanden and Brad A. Myers. 1990. Automatic, Look-and-
Feel Independent Dialog Creation for Graphical User Interfaces. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’90). ACM, Seattle, Washington, USA, 27–34. https:
//doi.org/10.1007/978-3-319-67744-_2

[37] Brad Vander Zanden and Brad A Myers. 1991. The Lapidary Graphical
Interface Design Tool. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, New York, NY, USA, 465–
466. https://doi.org/10.1145/108844.109005

[38] Clemens Zeidler, Christof Lutteroth, Wolfgang Stuerzlinger, and Ger-
ald Weber. 2013. Evaluating Direct Manipulation Operations for
Constraint-Based Layout. In IFIP Conference on Human-Computer In-
teraction (INTERACT). Springer, Berlin, Heidelberg, 513–529. https:
//doi.org/10.1007/978-3-642-40480-1_35

[39] Clemens Zeidler, Christof Lutteroth, Wolfgang Sturzlinger, and Gerald
Weber. 2013. The Auckland Layout Editor: An Improved GUI Layout
Specification Process. In Proceedings of the 26th Annual ACM Sym-
posium on User Interface Software and Technology (UIST ’13). ACM,
St. Andrews, Scotland, United Kingdom, 343–352. https://doi.org/10.
1145/2379256.2379287

[40] Clemens Zeidler, Christof Lutteroth, and Gerald Weber. 2012. Con-
straint Solving for Beautiful User Interfaces: How Solving Strategies
Support Layout Aesthetics. In Proceedings of the 13th International
Conference of the NZ Chapter of the ACM’s Special Interest Group
on Human-Computer Interaction. ACM, New York, NY, USA, 72–79.
https://doi.org/10.1145/2379256.2379268

[41] Clemens Zeidler, Johannes Müller, Christof Lutteroth, and Gerald
Weber. 2012. Comparing the Usability of Grid-Bag and Constraint-
Based Layouts. In Proceedings of the 24th Australian Computer-Human
Interaction Conference (OzCHI ’12). ACM, New York, NY, USA, 674–682.
https://doi.org/10.1145/2414536.2414638

[42] Clemens Zeidler, Gerald Weber, Alex Gavryushkin, and Christof Lut-
teroth. 2017. Tiling Algebra for Constraint-Based Layout Editing.
Journal of Logical and Algebraic Methods in Programming 89 (2017),
67–94. https://doi.org/10.1016/j.jlamp.2017.01.004

https://doi.org/10.1007/978-1-4842-2662-_20
https://doi.org/10.1007/978-1-4842-2662-_20
https://doi.org/10.1109/ASWEC.2008.4483218
https://doi.org/10.1177/154193120004400206
https://doi.org/10.1177/154193120004400206
https://doi.org/10.1145/200968.200971
https://doi.org/10.1145/200968.200971
https://doi.org/10.1145/15922.15914
https://doi.org/10.1007/1181494_18
https://doi.org/10.1145/2983990.2984010
https://doi.org/10.1145/2983990.2984010
https://doi.org/10.1145/3197231.3197249
https://doi.org/10.1016/j.infsof.2015.10.005
https://doi.org/10.1016/j.infsof.2015.10.005
https://doi.org/10.1145/97924.97943
https://doi.org/10.1145/2786805.2786808
https://doi.org/10.1145/2786805.2786808
https://doi.org/10.1145/120782.120804
https://doi.org/10.1109/ASWEC.2010.38
http://dl.acm.org/citation.cfm?id=1630659.1630944
https://doi.org/10.1007/978-3-319-67744-_2
https://doi.org/10.1007/978-3-319-67744-_2
https://doi.org/10.1145/108844.109005
https://doi.org/10.1007/978-3-642-40480-1_35
https://doi.org/10.1007/978-3-642-40480-1_35
https://doi.org/10.1145/2379256.2379287
https://doi.org/10.1145/2379256.2379287
https://doi.org/10.1145/2379256.2379268
https://doi.org/10.1145/2414536.2414638
https://doi.org/10.1016/j.jlamp.2017.01.004

	Abstract
	1 Introduction
	Contributions

	2 Related Work
	Layout Models
	Soft/Hard Linear Constraint Systems
	Layout Solvers
	GUI Builders/Editors
	Layout Alternatives and Alternative Generators

	3 OR-constrained (ORC) Layouts
	ORC Layout Specifications
	ORC Editor
	Solving a System with OR-Constraints
	ORC Layouts for Screen Rotation

	4 ORC Layout Patterns
	Mixed Layout Specifications
	Cross-Cutting Layout Pattern
	Connected Layout Pattern
	Balanced Flow Pattern
	Alternative Positions Pattern
	Alternative Widgets Pattern
	Optional Layout Pattern
	Flowing Widgets around a Fixed Area

	5 Implementation
	6 Evaluation
	Expert Review

	7 Discussion
	Limitations

	8 Conclusion
	Acknowledgements

	References

