
Video Fields: Fusing Multiple Surveillance Videos into a Dynamic Virtual
Environment

Ruofei Du*, Sujal Bista†, and Amitabh Varshney‡

Augmentarium, Department of Computer Science and the Institute for Advanced Computer Studies (UMIACS)
University of Maryland, College Park

surveillance video streams

calibration of camera world matrices

static 3D models and satellite image

Video Fields

Mapping

automatic segmentation and view-dependent rendering

dynamic virtual environment

Figure 1: Video Fields system fuses multiple videos, camera-world matrices from a calibration interface, static 3D models, as well as satellite
imagery into a novel dynamic virtual environment. Video Fields integrates automatic segmentation of moving entities during the rendering
pass and achieves view-dependent rendering in two ways: early pruning and deferred pruning. Video Fields takes advantage of the WebGL
and WebVR technology to achieve cross-platform compatibility across smart phones, tablets, desktops, high-resolution tiled curved displays,
as well as virtual reality head-mounted displays. See the supplementary video at http://augmentarium.umd.edu and http://video-fields.com.

Abstract

Surveillance videos are becoming ubiquitous for monitoring and
ensuring security. Nevertheless, mentally fusing the data from mul-
tiple video streams covering different regions comes with a high
cognitive burden. In this paper we introduce, Video Fields, a novel
web-based interactive system to create, calibrate, and render dy-
namic video-based virtual reality scenes in head-mounted displays,
as well as high-resolution wide-field-of-view tiled display walls.
Video Fields system automatically projects dynamic videos onto
user-defined geometries. It allows users to adjust camera parame-
ters, navigate through time, walk around the scene, and see through
the buildings. Our system integrates background modeling and au-
tomatic segmentation of moving entities with rendering of video
fields. We present two methods to render video fields: early prun-
ing and deferred pruning. Experimental results indicate that the
early pruning approach is more efficient than the deferred pruning.
Nevertheless, the deferred pruning achieves better results through
anti-aliasing and bi-linear interpolation. We envision the use of the
system and algorithms introduced in Video Fields for immersive
surveillance monitoring in virtual environments.
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1 Introduction

Surveillance videos play a crucial role in monitoring a variety of
activities in shopping centers, airports, train stations, and university
campuses. In conventional surveillance interfaces, where multiple
cameras are depicted on a display grid, human operators endure a
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high cognitive burden in fusing and interpreting multiple camera
views (Figure 2). In the field of computer vision, researchers have
made great strides in processing the surveillance videos for seg-
menting people, tracking moving entities, as well as classification
of human activities. Nevertheless, it remains a challenging task to
fuse multiple videos from RGB cameras, without prior depth infor-
mation, into a dynamic 3D virtual environment. Microsoft Kinect,
for example, cannot capture the infrared structured lighting patterns
in the sunlight. In this paper, we present our research in fusion of
multiple video streams taking advantage of the latest WebGL and
WebVR technology.

Figure 2: This photograph shows conventional surveillance inter-
face where multiple monitors are placed in front of the operators.
One of the greatest challenges for the users is to mentally fuse and
interpret moving entities from multiple camera views.

With recent advances in virtual reality (VR) headsets and web-
based interactive graphics technology, there is an increasing de-
mand for real-time photo-realistic dynamic scene generation. As an
exploratory work, we investigate the following research questions:

1. Can we efficiently generate dynamic scenes from surveillance
videos for VR applications?

2. Can we use a web-based interface to allow human operators
to calibrate the cameras intuitively?

3. Can we use the-state-of-the-art web technologies to achieve
interactive video-based rendering?

4. Can we render moving entities as 3D objects in virtual envi-
ronments?

In this paper, we present our early solutions to create dynamic vir-
tual reality from surveillance videos using web technologies. This
paper makes following contributions to the Web3D, graphics, and
virtual worlds’ communities:

1. conception, architecture, and implementation of Video Fields,
a mixed-reality system that fuses multiple surveillance videos
into an immersive virtual environment,

2. integrating automatic segmentation of moving entities in the
Video Fields rendering system,

3. presenting two novel methods to fuse multiple videos into
a dynamic virtual environment: early pruning and deferred
pruning of geometries,

4. achieving cross-platform compatibility across a range of
clients including smart phones, tablets, desktops, high-
resolution large-area wide field-of-view tiled display walls, as
well as head-mounted displays.

2 Related Work

We have built our Video Fields system upon previous work in fusing
from multiple photographs and videos, modeling and visualization
of surveillance videos, as well as spatio-temporal video navigation
and analysis.

2.1 Fusing Multiple Static Photographs

The idea of fusing multiple digital photographs using computer vi-
sion techniques seems intuitive, considering the spatial and visual
features of underlying images. Prior research has addressed crucial
problems and implemented novel systems to fuse multiple digital
photographs. For example, the University of Washington’s Photo
Tourism1 project [Snavely et al. 2006] and Microsoft’s PhotoSynth2

project [Sinha et al. 2009] use local scale-invariant features [Lowe
1999] to estimate corresponding points between images and re-
construct 3D point clouds of architectural tourist landmarks, thus
providing a unique visualization for seamless browsing of multi-
ple photographs. Patro et al. [2010] have described their Social
Snapshot system, which reconstructs a textured and colored mesh
from a loosely-ordered photo collection rather than the sparse or
dense-point reconstruction used in PhotoSynth and Photo Tourism.
Recently, Autodesk’s 123D Catch3 enables ordinary consumers to
scan static 3D objects by using phones or tablets to capture multiple
photographs and upload to the cloud servers.

In our Video Fields system, instead of fusing from multiple pho-
tographs, we focus on a greater challenge: fusing multiple videos.
There are two significant challenges in fusing videos: systemat-
ically handling (a) dynamic textures and (b) dynamic meshes or
point clouds. Dynamic textures demand an efficient segmentation
approach for real-time rendering, while dynamic meshes or point
clouds require efficient pruning techniques to improve the render-
ing performance.

2.2 Fusing Multiple Dynamic Videos

Many methods have been proposed to address the problem of 4D re-
construction from dynamic videos using multi-view reconstruction
algorithms. We give a brief overview of recent research in fusing
content from standard color (RGB) video cameras as well as video
cameras that capture color with depth (RGBD).

Furukawa et al. [2008] designed and implemented a markerless mo-
tion capture system from synchronized video streams acquired by
calibrated cameras. While compelling, it took two minutes on a
dual Xeon 3.2 GHz workstation to process a single frame. De
et al. [2008] proposed a system that reconstructs space-time co-
herent geometry with motion and textural surface appearance of
actors performing complex and rapid moves. However, this also
suffers from slow processing speed (approximately 10 minutes per
frame), largely due to challenges in stereo matching and optimiza-
tion. Since then, a number of advances have been made in dealing
with video constraints and rendering quality [Cagniart et al. 2010;
Vlasic et al. 2008; Xu et al. 2011; Casas et al. 2013], but render-
ing dynamic scenes in real-time from RGB video streams has re-
mained a challenge. In our approach, we did not employ structure-
from-motion algorithms for fusing multiple surveillance videos due
to the demands imposed by real-time surveillance monitoring. In-
stead, we use projection-mapping and pruning algorithms to render
the mixed reality scene in real time.

1Photo Tourism: http://phototour.cs.washington.edu
2PhotoSynth: https://photosynth.net
3123D Catch: http://www.123dapp.com/catch
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With recent advances in consumer-level depth sensors, a number of
dynamic reconstruction systems use Microsoft Kinect or Intel Real
Sense to generate dynamic geometries from point clouds. Kinect-
Fusion by Newcombe et al. [2011] and Izadi et al. [2011] was the
first system that tracks and fuses point clouds into dense meshes
using a single depth sensor. However, the initial version of Kinect-
Fusion could not handle dynamic scenes. The systems developed
by Ye et al. [2014] and Zhang et al. [2014] are able to reconstruct
non-rigid motion for articulated objects, such as human bodies and
animals. Further advances by Newcombe et al. [2015] and Xu et
al. [2015] have achieved more robust dynamic 3D reconstruction
from a single Kinect sensor by using warp-field or subspaces for
the surface deformation. Both techniques warp a reference volume
non-rigidly to each new input frame. Nevertheless, these systems
rely on a volumetric model that is used for model fitting, which is
limited in accommodating fast movement and major changes in the
shapes. In addition, the reconstructed scenes still suffer from the
occlusion issues since the data comes from a single depth sensor.

Recently, Dou et al. [2016] have proposed the first system, Holo-
portation, to capture dynamic 3D performance in real-time by us-
ing multiple RGBD cameras. The Holoportation system makes
no prior assumption, such as any pre-defined templates, regarding
the target scene and is highly robust to sudden motion and large
changes in meshes. Nevertheless, all of these depth-sensor-based
approaches are unable to work in outdoor scenarios, such as surveil-
lance monitoring, because the sunlight interferes with the structured
lighting patterns used by the current generation of depth cameras.
In Video Fields system, we use just the RGB cameras to achieve
photo-realistic 3D scene rendering in real-time, for both outdoor
and indoor scenarios.

2.3 Modeling and Visualization of Surveillance Videos

Modeling and visualization of moving entities such as humans, ve-
hicles, and even unmanned aerial vehicles have triggered signifi-
cant research in both computer vision and computer graphics fields.
Kanade et al. [1998] were the first to introduce the idea of importing
people from surveillance videos into a 3D scene in the DARPA Im-
age Understanding Workshop. Sankaranarayanan et al. [2009] have
taken the first steps in rendering moving pedestrians in surveillance
videos as virtual 3D human models. However, this work did not
employ dynamic texture mapping onto the human models, which
makes it difficult to distinguish one moving character from another.
The Video Surveillance and Monitoring (VSAM) system, invented
by Hall et al. [2002], first demonstrated the feasibility of fusing live
outdoor videos with maps and top-view aerial images. Instead of
projection mapping, their system uses a four-point registration pro-
cedure to simplify the projection and does not correct the perspec-
tive from arbitrary viewpoints. Neumann et al. [2004] presented the
Augmented Virtual Environment (AVE), which used video-based
projection mapping onto 3D models to create a mixed-reality en-
vironment. Nonetheless, AVE does not remove background pixels
when rendering moving entities and only supports a single billboard
in the rendering pass. Recently, Evans et al. [2015] presented a
web-based visualization of multimodal data including LIDAR data,
static image reconstruction, as well as witness video. This is an im-
pressive advance that overcomes many challenges of data transfer
limitations and rendering power. In contrast to their approach of
rendering the entire video as a billboard, in our approach we use
video-based projection mapping.

There are three distinct contributions of our Video Fields system
compared with the previous systems. First, Video Fields system
presents two new approaches to interactively segment and render
the moving entities in real time. Second, our system provides a
unique web-based interface to simplify the calibration and model-

ing processes, which usually requires professional domain knowl-
edge and significant time. Finally, our system is the first web-based
system that fuses and renders multiple videos in a virtual reality
headset or a tiled display.

2.4 Spatio-temporal Video Navigation and Analysis

Besides 3D video-based rendering techniques, prior research has
also devised novel interfaces for spatio-temporal video navigation
and analysis. For example, Girgensohn et al. [2007a] invented a
real-time, indoor video surveillance system with twenty cameras
called Dynamic Object Tracking System (DOTS). DOTS was able
to display nearby video feeds based on the referenced view, provid-
ing spatial information for easier navigation and analysis. As re-
ported in a formal user study [Girgensohn et al. 2007b], DOTS was
more helpful in tracking tasks than camera display arrays. DOTS
also introduced a 3D viewer that visualizes moving entities as bill-
boards in a 3D context. Their system also showed that embedding
people in a 3D viewer is useful for video surveillance. In our ap-
proach, we build upon this work to merge multiple videos with the
latest advances in web technology and use transparency and new
pruning techniques to achieve superior fusion and rendering.

Wang et al. [2007] have explored combining videos with 3D spa-
tial layouts. Their pioneering work has identified user tasks in
video surveillance that are likely to benefit with a spatial-temporal
context. They proved that embedding videos in a 3D context can
improve task performance for video-model relationship tasks. We
build upon their research by including video projection with appro-
priate segmentation and making our results be available on a variety
of platforms using WebGL and WebVR technology. We believe that
users can benefit more from an immersive visualization experience
of multiple fused videos in a virtual environment.

3 System Design

Video Fields system consists of a camera world calibration inter-
face, a back-end server to process and stream the videos, and a
web-based rendering system. The flow chart of the system is shown
in Figure. 3.

Figure 3: This figure shows the work flow of Video Fields. Our
system imports video streams as video textures in WebGL. In the
WebGL camera world calibration interface, the user may create
the ground, calibrate the cameras, and add initial geometries. The
videos are then sent to the Video Fields server for generating a
background model.



3.1 Camera-World Calibration Interface

The camera-world calibration interface for Video Fields has been
built based on WebGL and WebVR. We use the open-source library
Three.js4 to create the interface and render the mixed-reality
scene. We have designed a four-stage work flow for Video Fields.
First, users import their videos into the system. During this stage,
the users can also alter the video time-line to crop and synchronize
the videos manually, if needed. Then users can define the ground
projection plane for the projection. Second, users adjust the posi-
tion and the rotating quaternion for each camera in the videos as
if they were orienting flashlights onto the ground projection plane.
We have used the transform controller in the Three.js library to
provide such an interface. Third, users can drag geometric prim-
itives for constructing buildings for the 3D world. The user can
watch real-time rendering results interactively as they are dragging
the geometric primitives. Finally, users can use any number of dis-
play devices, including the VR headsets, to experience the world
that they have just created. Using the estimated position and size of
each geometry, we can attach textures to the user-defined building
geometry. We can also use a sky sphere to enhance the visual im-
mersion. The position, scaling, and rotation of the cameras (as cam-
era world matrices C) and the 3D models are exported and saved
in the JSON format.

3.2 Background Modeling

The motivation of background modeling is to provide a background
texture for each camera to identify moving entities in the render-
ing stage and to reduce the network bandwidth requirements when
streaming videos from the web-server. With a robust estimation of
the background, only the pixels corresponding to the moving enti-
ties will need to be streamed for rendering and not the rest of the
video for every frame.

In order to estimate robust background images, we take advan-
tage of Gaussian Mixture Models (GMM) for background model-
ing. Compared with the mean filter or the Kalman filter, GMM is
more adaptive with different lighting conditions, repetitive motions
of scene elements, as well as moving entities in slow motion [Stauf-
fer and Grimson 1999].

Given the video texture T , for each pixel tuv at the texture coor-
dinates (u, v), we model the background value of the pixels as a
mixture of N Gaussian distributions Puv . For each frame at time
i ∈ {1, . . . ,M}, we denote T (u, v)i as the set of all previous pix-
els at tuv , P(T (u, v)i) as the probability of the background color
of the pixel at (u, v):

T (u, v)i = {T (u, v, j), 1 ≤ j ≤ i}

P(T (u, v)i) =

N∑
j=1

N (T (u, v)i|µij ,Σij) · ωij
(1)

whereN is the total number of Gaussian distributions. We setN ←
3 in our implementation and N is the Gaussian probability density
function:

N (T (u, v)i|µ,Σ) =
1

(2π)
n
2
· 1

Σ
1
2

·e−
1
2
(T (u,v)i−µij)

T σ−1
ij (T (u,v)i−µij)

(2)
where Σ is the covariance matrix. We assume that the red, green,
and blue channels are independent and have the same variances.

4Three.js: http://threejs.org/

(a) source video texture

(b) background model by GMM

(d) segmentation with Gaussian convolution

(c) segmentation without Gaussian convolution

Figure 4: (a) shows a reference frame of the video texture, (b)
shows the background model learnt by the Gaussian Mixture Mod-
els approach, (c) shows segmentation without Gaussian convolu-
tion, and (d) shows the segmentation with Gaussian convolution

http://threejs.org/


Thus, the GMM can be trained at a lower cost of computing the
covariance matrix. To update the Gaussian distributions, we used
an online K-means algorithm to learn the weights ωij :

ωij ← (1− α)ωi(j−1) + αMij (3)

where α is the learning rate andMij indicates whether the model
is matched to the current pixel. An example of the computed back-
ground model is shown in Figure 4(b).

3.3 Segmentation of Moving Entities

After learning the background model for each video, we achieve
real-time interactive segmentation of moving entities during the
fragment-shader rendering pass by taking advantage of the many-
core computing on the GPU. To alleviate noise and smooth the
boundaries, given input video texture T and its corresponding back-
ground model B, we convolve T and B with a Gaussian kernel G
at scale σ:

T ′ ← G (σ)⊗ T ,B′ ← G (σ)⊗B (4)

We segment the moving entities by the thresholding function δ:

F ← δ(|I ′ −B′|) (5)

A comparative example showing the advantage of using the Gaus-
sian convolution is shown in Figure 4 (c) and (d) using the same
threshold of 0.08. This parameter is passed to the fragment shader
as a GLSL floating-point number, thus enabling the user to interac-
tively alter the thresholding function in the WebGL browser. After
obtaining the foreground F , we also calculate the set of bounding
rectangles R of moving entities in F .

3.4 Video Fields Mapping

Figure 5: This figure shows the the overview of the Video Fields
mapping by projecting 2D imagery from the streaming videos onto
a 3D scene; t1, . . . , t4 indicate the key points of the foreground
bounding boxes in the input 2D frames and p1, . . . , p4 indicate the
corresponding projected points.

To map video fields onto the geometries in the 3D virtual envi-
ronment, we need to establish bidirectional mapping between the
texture space and the 3D world space. Here, we use the ground
model as an example of an arbitrary geometry in the 3D scene. The
challenges we address here are as follows:

• Given a vertex on the ground model, we need to calculate the
corresponding pixel in the texture space. This is important for
visualizing the color of the ground model.

• Given a pixel in the texture space, we need to calculate the
corresponding vertex on the ground to project that pixel. This
is important for projecting a 2D segmentation of a moving
entity to the 3D world.

The first challenge could be solved by projection mapping, but we
need to correct for the inherent perspective in the acquired video.
Given the camera-world matrix C, which is obtained from the
WebGL-based camera-world calibration interface, and the model
matrix of the ground G. For each vertex pxyz on the ground, we
first use the camera-world matrix and the ground-model matrix to
convert its coordinates to the homogeneous coordinates in the cam-
era space:

p̂xyzw ← C ·G · (pxyz, 1.0) (6)

To obtain the texture coordinates tuv , we need to carry out perspec-
tive correction:

tuv ←
( p̂x + p̂w

2p̂w
,
p̂y + p̂w

2p̂w

)
(7)

Figure 6 shows the results before and after the perspective correc-
tion.

(a) Video Fields mapping before perspective correction

(b) Video Fields mapping after perspective correction

Figure 6: This figure shows the results before and after the per-
spective correction. The texture in (a) has the same perspective as
the original video, but is not projected correctly in the 3D scene.

The second challenge, to convert a 2D point to 3D, is non-trivial
because projection from 3D to 2D is irreversible. To do this, we
first compute a dense grid contained within the ground projection
of the video. For each 3D vertex of this grid, we compute the cor-
responding 2D coordinates in the video texture using equations 4
and 5. We store the results in a hash function H . Since we are
using a dense grid, all points in the video texture can be mapped to



a 3D vertex on the ground. Finally, we store the results in a hash
function:

H : tuv 7−→ pxyz. (8)

Once calculated, this hash map can be stored on the server side and
be used for mapping 2D texture points back to the 3D world. For
each vertex p on the ground, we also calculate the angle between
the camera ray and the ground surface θp.

3.5 Early Pruning for Rendering Moving Entities

To render moving entities in the 3D world, we remove the back-
ground pixels from the video texture and correct the projection so
that the moving entities are vertical on the ground model. In the
Early Pruning approach, we discard the pixels that do not belong
to the foreground as soon as the foreground is identified after the
Gaussian convolution and thresholding by equations 4 and 5. Then
the foreground pixels are transformed into a 3D point cloud and
projected to the 3D world space. We use point clouds to imple-
ment the early pruning technique and optimize the rendering per-
formance of Video Fields since they are extremely efficient to ren-
der. The detailed algorithm is described in Algorithm 1. View-
dependent results of our visualization technique are shown in Fig-
ure 4.

3.6 Deferred Pruning for Rendering Moving Entities

Though pruning the background pixels at an early stage is useful
for our videos where most pixels belong to the background, we
have also developed the deferred pruning approach for better anti-
aliasing, bi-linear sampling and faster visibility testing. In this ap-
proach, we dynamically project videos on moving billboards. The
background subtraction is completed in the fragment shader of each
billboard. After the world matrix of a billboard is determined, we
test the visibility of the billboard. We then render foreground pixels
onto the billboard and discard the background pixels. We describe
the details in Algorithm 2.

3.7 Visibility Testing and Opacity Modulation

One of the biggest advantages for visualizing videos in an immer-
sive 3D virtual environment is that the system is able to adjust the
opacity of every object, thus allowing the users to “see-through

ALGORITHM 1: Early Pruning for Rendering Moving Entities

Input: foreground F and the set of bounding rectangles R of
moving entities

Output: a 3D point cloud P visualizing the moving entities
1 Initialize a set of points for the video visualization. (Run once);
2 For each pixel t inside the bounding box, calculate the intersection

point t⊥ between its perpendicular line and t1t3;
3 for each pixel t from the video do
4 if t /∈ F then
5 discard t and continue;

6 set the color of the pixel: c← texture2D(F , t);
7 look up the corresponding projected points in the 3D scene:

p←H (t),p⊥ = H (t⊥);
8 update the z coordinate of the 3D point:

pz ← |p− p⊥| · tan(θp) ;
9 use the x, y coordinates of t⊥ to place the point vertically:

pxy ← tuv ;
10 render the point p;

(a) Early pruning for rendering moving entities

(b) Deferred pruning for rendering moving entities

Figure 7: This figure shows the segmentation of moving entities,
view-dependent rendering, as well as zoom-in comparison between
the early pruning algorithm and the deferred pruning algorithm.

buildings”. The users can therefore observe the video-recorded ac-
tivities from cameras that would otherwise not be viewable from a
user’s given vantage point. We achieve this by doing a visibility test
using ray-casting from the current camera to every moving entity in
the scene. If a moving entity is found to be occluded, we can mod-
ulate the opacity of that occluding object and render the moving
entities. Figure 8 shows an example before and after the visibility
test and opacity modulation.

4 Experiments and Evaluation

In our experiment, we recorded three 10-minute video clips with
the resolution of 1280 × 720 pixels. We tested both the early-
and deferred-pruning algorithms in the following three settings.
The first two tests were conducted on a desktop workstation with
a NVIDIA Quadro K6000 graphics card running Windows 8.1 on
Google Chromium 48.0.2544.0 with WebVR enabled. We tested
on a regular desktop display with a resolution of 2560 × 1440 as

ALGORITHM 2: Deferred Pruning for Rendering Moving Entities

Input: foreground F and the set of bounding rectangles R of
moving entities

Output: a set of billboards rendering the moving entities
1 Initialize a set of billboards to display moving objects. (Run once);
2 for each detected bounding box r in R do
3 calculate the bottom-left, bottom-middle, bottom-right and

top-middle points t1, t2, t3, t4 in r, as illustrated in Fig. 5;
4 look up the corresponding projected points in the 3D scene:

pi ←H (ti), i ∈ {1, 2, 3, 4}.;
5 calculate the width of the billboard in the 3D space:

w ← |p3 − p1|, h← |p4 − p2| · tan(θp4).;
6 Reposition a billboard to the position p1+p3

2
with width and

height w and h;
7 In the fragment shader of the billboard, sample the color from

I as described in Equation. 6 and 7, but replace G with the
current billboard’s model matrix; discard pixels which does
not belong to the foreground F ;



(a) Rendering before visibility testing and opacity modulation

(b) Rendering after visibility testing and opacity modulation

Figure 8: This figure shows the rendering results before and after
the visibility test and opacity adjustment. Note that the two peo-
ple behind the building are correctly rendered through the semi-
transparent meshes.

well as Oculus Rift DK2 head-mounted display with a resolution
of 950 × 1080 for each eye. The last test was conducted in an im-
mersive curved screen environment with 15 projectors driven by 4
NVIDIA Quadro K6000 graphics cards. The rendering resolution
was 6000 × 3000 pixels. The results were rendered with the same
software setup. The experimental results are shown below:

Table 1: The experimental results of early pruning and deferred
pruning for different display devices and resolutions.

Render Algorithm Resolution WebVR Framerate
2560× 1440 No 60.0 fps

Early Pruning 2× 960× 1080 Yes 55.2 fps
6000× 3000 No 48.6 fps
2560× 1440 No 60.0 fps

Deferred Pruning 2× 960× 1080 Yes 41.5 fps
6000× 3000 No 32.4 fps

From the table above, both deferred pruning and early pruning
achieve interactive rates in desktop settings. However, for stereo
rendering using WebVR-enabled browser and high-resolution ren-
dering, deferred pruning suffers from lower frame rate. This is be-
cause deferred pruning carries out the texture sampling after the
vertex transformation for each billboard. However, the advantage of
the deferred pruning approach is that it achieves better anti-aliasing
results than early pruning as shown in Figure. 7. On the other hand,
the early pruning approach samples the colors at an early stage
and discards unnecessary background pixels in the fragment shader,
making it a faster approach than the deferred pruning.

Please visit the websites http://augmentarium.umd.edu and http://
video-fields.com for supplementary materials related to this paper.

5 Conclusions and Future Work

In this paper, we have described a web-based rendering system that
fuses multiple surveillance videos to create a dynamic virtual envi-
ronment.

Our approach leverages the recent advances in web-based render-
ing to design and implement the Video Fields system to provide a
more immersive and easier-to-use dynamic virtual environment for
visualizing multiple videos in their appropriate spatial context. We
have compared two new ways of fusing moving entities into the 3D
world: early pruning and deferred pruning. We found that each has
its relative advantages. The choice of which technique to use will
depend on the characteristics of the environment being recorded as
well as the preferred display device.

In future, we plan to scale up our approach to handle hundreds of
surveillance videos spread over a wider area. To do so effectively,
we plan to use techniques from image and mesh saliency [Lee et al.
2005; Kim and Varshney 2008; Kim et al. 2010; Ip and Varshney
2011]. As we broaden the scale and scope of our work, more ef-
ficient distributed systems and parallel computing algorithms will
be necessary to achieve interactive rendering rates. We also plan to
explore the integration of our efforts with scalable, distributed, and
parallel web-services platforms such as Amazon’s S3.
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