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ABSTRACT
It is well acknowledged that alternative splicing module plays a

crucial role to identify the variations of the RNA transcriptomes. In
high-throughput short-read RNA, splicing analysis is a challenging
task due to the uncertainty and time complexity of reads alignments
onto genome and transcriptome.

In this paper, we introduce k-mer based statistical method for
splicing event analysis. The k-mer based representation avoids time-
consuming reads alignment, and the significant differential k-mers
between controlled group of samples are a good indicator of existence
of certain types of splicing events. We explored statistical models
including t-test, DESeq and likelihood ratio test to identify statistical
significant differential k-mers. We also develop a faset k-mer mapping
method instead of Bowtie for identifying whether a k-mer from reads
data can be matched on genome or transcriptome.

1 INTRODUCTION
Alternative splicing is a regulated process during gene expression
that results in a single gene coding for multiple proteins. Similar
to the isoform abundance difference, the difference in alternative
splicing events has been shown as an important method to tell
the variations of the RNA transcriptomes, which may improve
understanding of cell differentiation and classify disease types
[3, 5, 6, 11]. Splicing event is often classified as different alternative
splicing module (ASM). From [12], there are five traditional basic
modes of alternative splicing events: Exon skipping or cassette
exon, Mutually exclusive exons, Alternative donor site, Alternative
acceptor site, and Intron retention. These five modes describe basic
splicing mechanisms, but is inadequate to describe complex splicing
events [4].

High-throughput short-read RNA sequencing technologies provide
in-depth and high-speed sampling of the transcriptome, however,
the outputs of the technique introduce uncertainty, and the time
required for analysis has not kept up with the pace of data
generation. Thus scalable method is greatly desired. Recently, k-
mer and k-mer index have been shown as a very effective method
to accelerate certain bio-statistics task, such as detecting isoform
abundance [8, 9]. K-mer is a fixed sized (K) sequence of nucleic
acid or amino acid bases [13]. K-mer index compresses the sequence
by counting the co-occurrence and mapping each transcript to the
set of its k-mers and mapping each k-mer to the sets of transcripts
including it. In Sailfish [8], Patro, et al. use k-mer instead of
the computationally intensive reads mapping method to develop a
statistical method and find abundance of isoforms with an order
magnitude performance gain.

In this project, our task is to investigate the scalable statistic
methods to find the significant differential k-mer to infer alternative
splicing events from RNA-Seq reads. Our K-mer based method
does not require reads alignment but calculate K-mers counts for
RNA-Seq reads. We explore several statistical methods based on
k-mer counts to identify significantly differential counts including t-
test, DESeq, and likelihood ratio test. Additionally, we develop fast
method for k-mer matching, which is 2 orders of magnitude faster
than Bowtie. To the best of our knowledge, we conducted the first
study on k-mers based statistical model for splicing event analysis.

2 PROBLEM STATEMENT
Given RNA-Seq reads from a total of S treated and untreated
samples, we can find all the unique k-mers (size K) appeared in
the each samples and count their frequencies. Then we have a
K×S matrix of k-mer counts. The problem is how to identify some
unusual splicing events by inferring this frequency matrix.

A k-mer from sequencing data can be mapped to three groups: (1)
in the genome (introns and exons); (2) in the transcriptome (exon-
exon-junction); (3) only in the reads data. The k-mers mapped to
genome are not useful for splicing event analysis. The k-mers in the
second group are possibly generated from splicing events of “Exon
skipping” and “Mutually exclusive exons”. The k-mers that cannot
be find in the genome or transcriptome may be generated from
splicing events of “Alternative donor site”, “Alternative acceptor
site”, “Intron retention” and the other anomalies.

Since an alternative splicing events could generate unique k-
mers that cannot find in genome or transcriptome (generated by
other splicing events), some k-mers in treated samples may have
significant differential frequencies comparing to untreated samples.
Thus the appearance of a certain k-mer with great count difference
between the two groups could be a strong indicator for the existence
of a certain splicing event in the treated samples.

Though the abnormal k-mers that do not appear in genome or
transcriptome can be identified by a brute force matching, those
k-mers could be generated by sequencing errors. To eliminate
false discoveries, statical methods need to be developed for robust
abnormal k-mer identification.

The workflow of our approach is as follows: first, build k-mer
index for all the reads data and count their frequency; second, find
the statistically significant differential k-mers set; third, map these
significant differential k-mers on the three groups; last we can use
the unmapped k-mers to identify splicing events.
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3 DATA DESCRIPTION
We conducted our experiments on the RNA-Seq data published
by Brooks et al. [2]. The datasets are publicly available in the
NCBI Gene Expression Omnibus under the accession GSE185081.
As shown in Table 1, we used ”S2 DRSC Untreated-3,4” as an
untreated control group and ”S2 DRSC CG8144 RNAi-3,4” as an
experimental group with the gene CG8144 of pasilla knocked down.
Later we named the sample 1 and 2 as Treated1 and Treated2,
sample 3 and 4 as Untreated1 and Untreated2. Each group contains
two biological replicates. The gene CG8144 is known to bind to
mRNA in the spliceosome, and is thought to be involved in the
regulation of splicing.

In this project, our goal is to identify the patterns of the special
splicing events caused by the gene CG8144 knocked down. A k-mer
based method is to find the significant differential k-mers between
the treated group and the untreated group.

Table 1. Read numbers statistics of the datasets

id filer type number of reads

1 S2 DRSC CG8144 RNAi-3 paired-end 4.9 ∗ 107(×2)
2 S2 DRSC CG8144 RNAi-4 paired-end 4.1 ∗ 107(×2)
3 S2 DRSC Untreated-3 paired-end 3.8 ∗ 107(×2)
4 S2 DRSC Untreated-4 paired-end 4.5 ∗ 107(×2)

3.1 Data Pre-processing
3.1.1 K-mer counts matrix Given a set of RNA-Seq reads, we
first calculate k-mer counts instead of aligning them to the annotated
gene. Each reads set can be represented as a column that each cell
is the number of times the corresponding k-mer appearing in the
whole reads set. Then several RNA-Seq samples are represented as
a matrix C ∈ ZK×S , where K is the k-mer sequences ordered by
the value calculated by perfect hash function HK , and S is the set
of samples one of which is composed of RNA-Seq reads. We will
choose a reasonable k (e.g. 25) to eliminate the possibility that one
k-mer can be mapped to multiple places in the RNA while tolerating
to errors.

In detail, we first preprocessed the RNA-Seq sample reads set
Ψ using k-mer counts instead of mapping to the annotated gene or
isoforms and at the same time construct a perfect hashHK to map a
k-mer string to an integer. The HK we used is to map a gene string
to a base 4 numbers, which A is 0, C is 1, G is 2, and T is 3. So the
range of HK is [0, 425].

Considering the fact that smaller k-mers are not unique enough
to be distinguished while larger k-mers cost too much disk and
memory space to store, we choose a k-mer length k = 25 as the
default parameter in our exploration. Given the k-mer length k, we
computed a perfect hash function HK on the set of kmers(Ψ). In
GSE18508 data, |S| = 4. The number of appeared k-mers is around
112.9 millions.

1 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18508

3.1.2 Normalization Since the number of reads are different in
the 4 reads samples, it requires a method to normalize the counts
matrix. In this project, we tried two normalization methods. The first
one is to calculate the k-mer ratio in its reads sample. The second
one is the same normalization method from DESeq [1]. In the rest
of the paper, we use the DESeq normalization method.

K-mer ratio. For each k-mer, we calculate its count ratio in its
reads sample defined as follows:

rij =
Cij∑
i Cij

, j ∈ [1, 4] (1)

DESeq. We first calculate the geometric mean for each row of C.
Then we take the median of the ratios of observed counts as the size
factors sj of the corresponding samples j.

sj = mediani(
Cij
ri

) for i where ri 6= 0

ri = (

j=4∏
j=1

Cij)
1/4

Here we give a sample distribution of Cij

ri
on Treated 1 in Figure

1. The distributions of other samples are similar to this one. Table 2
shows the medium sj of the four samples, which are the size factors.
The normalized matrix is calculated by the counts matrix that each
column divides its size factor, e.g., CNij =

Cij

sj
.

Fig. 1. The distribution of counts over geometric means on Treated 1

Table 2. The size factors of the four samples

Treated1 Treated2 Untreated1 Untreated2
1.000 1.092 0.931 1.003

3.2 Data Exploration
3.2.1 K-mer Distribution In order to build a sound statistical
model, we look into the distribution of k-mer counts, and the
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correlation between the k-mer counts of the same k-mer in untreated
and treated group.

In Fig. 3(a), we show the distribution of normalized k-mer count.
The x axis is the k-mer counts in log scale, and the y axis is the
frequency in log scale. As we can see, it is close to linear shape
and the heavy long tail show a powerlaw distribution. We can use
Pareto type I distribution, Pareto(1, k), where k is the skewness
shape parameter, to describe the data. Interestingly, the skewness
of both groups are very similar. We also investigate the rank based
distribution, and it follows a powerlaw distribution as well, in other
words, the k-mer count follows Zipf distribution.

(a) Normalized k-mer count
distribution for treated and untreated
samples.

(b) K-mer correlation between
untreated and treated group among
the three samples

Fig. 3. Data Exploration Result

Regarding the flat head of the log-log scaled distribution, we
listed the k-mers in Table 3.

3.2.2 K-mer Covariance Intuitively, large amount of k-mer
index ratio should be the same in treated and untreated group. Thus
the counts of the same k-mer in two groups are not independent.
We verify our proposition by plotting the covariance in Fig. 3(b), as
we can see the shape is radical shape. Each dot in the plot is a 2-
dimensional vector. Also the Pareto distribution of the k-mer counts
can be seen from this figure as well, as the density of the dots are
very skewed along the diagonal.

From the k-mer distribution analysis and the covariance analysis,
we investigate to use a bivariate Pareto Prior to describe the k-mer
matrix.

In Figure 2(a) and Figure 2(b), we explored the dependence of
variance and squared variance coefficient versus mean.

The inference in DESeq relies on an estimation of the relationship
between the k-mer counts’ variance and their mean, or equivalently
the data’s dispersion and their mean. The dispersion could be
understood as the square of the coefficient of biological variation.
Specifically, the dispersion is defined as:

α =
v − sµ
s2µ2

,

where s, v, µ correspond to the size factor, variance and mean for
each k-mer.

From the scatter plots of dispersion versus mean of the k-mer
counts table in Figure 2(c), we observed that when mean is smaller
than K = 100, the dispersion decreases as mean rises; as the mean
is large enough, the dispersion remains the same.

4 STATISTIC METHOD
Different splicing events result in the different in k-mer counts of
the two groups. Essentially, we want to identify some k-mers that
are statistically significant different from other k-mers, which is a
superset of the different k-mer counts caused by splicing events.

To achieve this, we investigate sevearl methods, namely, t-test,
DESeq test and likelihood ratio test in our project. We present the
findings in this section.

4.1 t-test
In order to identify statistically significant differential k-mers in
the hundres of millions appeared k-mers, one intuitive method is
to apply t-test to compare the two means of k-mer counts between
treated and untreated groups, by assuming the counts within one
group are normally distributed and different k-mers are independent.
Though the two assumptions are strong, t-test is simple to conduct
and could be serve as the baseline of our analytical task.

For each row, we use H0: µt = µu as our hypothesis, in other
words we want to test the rows that the treated and untreated group
k-mer counts mean are not the same. For the t-test, we vary α ∈
{0.1, 0.05, 0.01} to see how does it performs. In Fig 4, we first
show the statistically significant different k-mers plotted together

(a) Dependence of the variance on the mean for
the k-mer count table.

(b) Dependence of the squared variance
coefficient on the mean for the k-mer count table.

(c) Empirical (black dots) and fitted (red lines)
dispersion values plotted against the mean of the
normalized read counts

Fig. 2. Data Exploration Result
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Table 3. K-mer Count Percentage between Treated and Untreated Groups

Treated Untreated

K-mer R(+) (×10−4) K-mer R(−) (×10−4)
ACCATTCATTCCAGCCTTCAATTAA 0.569 TTCGTACTAAAATATCACAATTTTT 0.424
AACCATTCATTCCAGCCTTCAATTA 0.567 CGTACTAAAATATCACAATTTTTTA 0.423
CAACCATTCATTCCAGCCTTCAATT 0.566 GTACTAAAATATCACAATTTTTTAA 0.421
CCATTCATTCCAGCCTTCAATTAAA 0.566 TACTAAAATATCACAATTTTTTAAA 0.421
ATTCATTCCAGCCTTCAATTAAAAG 0.561 TCGTACTAAAATATCACAATTTTTT 0.421
CATTCATTCCAGCCTTCAATTAAAA 0.557 TTTCGTACTAAAATATCACAATTTT 0.412
TTCATTCCAGCCTTCAATTAAAAGA 0.557 CTAAAATATCACAATTTTTTAAAGA 0.401
TCGTACTAAAATATCACAATTTTTT 0.553 TAAAATATCACAATTTTTTAAAGAT 0.397
CGTACTAAAATATCACAATTTTTTA 0.552 CTTTCGTACTAAAATATCACAATTT 0.394
GTACTAAAATATCACAATTTTTTAA 0.551 ACTAAAATATCACAATTTTTTAAAG 0.388

(a) On all k-mers, the whole dataset,
α = {0.1, 0.05, 0.01}

(b) On k-mer count less than 500,
α = {0.1, 0.05, 0.01}

(c) On k-mer count less than 500,
α = {0.05, 0.01}

(d) On k-mer count less than 500,
α = 0.01

(e) On k-mer count less than 100,
α = {0.05, 0.01}

(f) On k-mer count less than 100,
α = 0.01

Fig. 4. T-test result, Varying α = {0.1, 0.05, 0.01}, Zoom in to {500, 100}

with original data in Fig 4(a). The red color is original k-mer count
pairs, purple color is the different k-mers when α = 0.1, blue color
shows the ones when α = 0.05, and finally green color plotted the
k-mers found when α = 0.01.

When we increase α, differential k-mers number increases. We
show this different in the Fig 4(b), Fig 4(c) and Fig 4(d). We also
show the case when we restrict the k-mer count to be less than 100,
in order to see what kind of k-mer rows did t-test found in relatively
rare k-mers in Fig 4(e) and Fig 4(f).

As we can see, t-test is a good baseline, since it can found almost
all the outliers (the arms not along the t = u diagonal). On the other
hand, the precision cannot be high, as we can see in Fig 4(f), many
inner points are reported as differential ones. Main reason is the two
mean comparision t-test uses the same threshold for different k-mer
counts. As we can see in dispertion figure in the data exploration,
this assumption is not true. Other drawbacks of this approach, is the
data itself may not be normally distributed and not independent.

4.2 DESeq test
DESeq developed a general framework to identify the significant
differential reads counts in different samples. Inspired by DESeq,
we assume that the read counts of k-mer i in sample j could
be modeled by a negative binomial (NB) distribution with two
parameters p and r.

Kij ∼ Pr(K = k) =

(
k + r − 1

r − 1

)
pr(1− p)k

which is equivalent to be parametrized in terms of its mean µ and
variance σ2:

p =
p

σ2
; r =

µ2

σ2 − µ
Furthermore, DESeq introduced a variance mean model to reduce

the over-dispersion problem:
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σ2
ij = µij + s2jvi,ρ(j)

where sj is the size factor and vi,ρ(j) is the per k-mer raw variance
parameter. DESeq proposes to use local regression on a gamma
family linear model to estimate the parameters.

Then DESeq propose a test based on fitted empirical distribution
to find the statistically significant differential k-mers.

Due the high time complexity of the fitting algorithm in DESeq,
the entire dataset takes more than 5 hours to be processed. As
a compromise, we extract the unique k-mers, i.e. representatives
of k-mers with the same counts in all the samples, and then plot
the log2 fold changes against the mean normalized counts in Fig.
5 to evaluate the negative binomial model. Each scatter point
corresponds to a k-mer while the red ones indicate the differentially
expressed k-mers at 10% false discovery rate.

Fig. 5. Testing for differential expression between treated and untreated
groups: Scatter plot of log2 ratio (fold change) versus mean.

We also plot our t-test result (with α = 0.01) on the same chart as
shown in Fig. 6. Comparing with DESeq test result shown in Fig. 5,
we found that t-test precision is not satisfactory.

Fig. 6. t-test (α = 0.01 result plotted on the log2 ratio (fold change) versus
mean figure

4.3 Likelihood ratio test
Though DESeq method seems promising, it is computationally
expensive in the model fitting stage, also the empirical distribution
based test is non-linear. The model fitting in DESeq paper uses a
local regression on gamma family linear models. It cannot finish
on the entire k-mer count table in our dataset. Our DESeq result
reported in the previous section is produced after unique the k-mer
pairs, i.e. when two rows have the same normalized numbers.

In our project, we also investigate the likelihood ratio test
approach. The approach requires us to build a joint distribution
model to describe the data, and use the test to report differential
k-mers. As an overview, the likelihood ratio test compares two
competing models, a null model with joint probability pnull(x, y)
and an alternative model palter(x, y). The null model is relatively
a simpler model and has less degree of freedom fn while the
alternative is a richer model with more freedom fa. The two models
are separately fitted with data to estimate their parameters.

D = −2ln(
pnull(x, y)

palter(x, y)
) (2)

Then the log likelihood ratio (Eq 2) is applied for a given k-mer
row. One can use χ2

fa−fn test to produce statistically significant
differential k-mers.

Using this approach, ideally one can propose rich model that can
be fitted fast to work on the hundreds of millions of k-mers rows, in
order to make this approach highly scalable.

4.3.1 The Null Model The null model can be built using a Pareto
distribution to describe our data. Pareto type I distribution has
analytical MLE solutions, whose pdf is

f(x) =
αxαmin
xα+1

, x ≥ xmin

where xmin is the minimum x, and the only parameter is α. The
MLE for α has analytical solutions, and can be solved inO(n) time.

α̂ =
n∑n

i=1 log( xi
xmin

)

Also notice that many k-mer counts having the same values, one can
group by the same count k-mers in the denominator. Thus the total
number of operations can be reduced significantly. In our dataset,
though there are around 0.1 billion distinct k-mers, the unique xi is
only 70k.

On the other hand, type II pareto distribution (Lomax distribution)
with the following pdf definition does not have an analytical solution
when estimating α and θ in MLE, thus it is not ideal to be used for
the likelihood ratio test when we want to derive a scalable test.

f(x) =
θα

(1 + θx)α+1

4.3.2 The Alternative Model The alternative model should be
available to describe the data more precisely using more parameters.
To build this alternative model, we tried two approaches in our
project.

Joint bivariate Pareto Model: First, we used a bivariate pareto
model published in recent statistics journal [10]. The model is based
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on the following survival function for x > 0, y > 0:

SX,Y (x, y) = P (X > x, Y > y) = (1 + α1x+ α2y + α0xy)−θ

and the related pdf function is defined as:

fX,Y (x, y) =
θ(θ(α1 + α0y)(α2 + α0x) + α1α2 − α0)

(1 + α1x+ α2y + α0xy)θ+2

The MLE is discussed thoroughly in their paper [10], which
requires to solve two nonlinear optimization problems, one is two
dimension problem for (α1, α2), the other is a single dimension
problem for (α0). We used the grouping technique and wrote our
own random seed hill climbing optimization algorithm in C++ and
the parameter fitting took about 10 minutes on the whole dataset.
We show the fitted parameters in Table 4.

Table 4. Bivariate Model Parameter Fitting Result

α0 α1 α2 θ

0.01441 0.0425 0.0441 6.67

Plug in the parameter, we plot the pdf function of the bivariate
model in Fig 7. Unfortunately, as we see from the figure, we found
that the bivariate model [10] is lack of shape parameter to model the
positive correlation appeared in our data (Fig 3(b)).

(a) Pdf 3D Plot (b) Pdf Contour Plot

Fig. 7. Bivariate Model Fitting Result

Thus, in the last phase of our project, we moved on to build our
own model to fit better the data set we have.

Conditional Model In general, a joint bivariate model f(x, y)
can be modeled separately on f(x) and the conditional probability
f(y|x). The f(x) in our dataset has powerlaw distribution as shown
in Fig 3(a) (DESeq proposes to use Negative Binomial Distribution
to model the count probability f(x)). On the other hand, modeling
the conditional probability f(y|x) is more challenging, as we can
see from Fig 3(b) the mean and variance of {y} of each xi is tricky
to model cleanly.

We propose the following prerequisites for this model:

1. In order to use the likelihood ratio test, the richer model must
not have too many parameters, otherwise the χ2 test with too
many degree of freedom helps little to justify the differential
k-mers.

2. On the other hand, for a scalable model, the parameter
estimation should be fast to deal with the huge amount of
k-mers.

Fig. 8. The count correlation of consequent K-mers at specific genome
position.

One thought we had is to fix mean µyi as a function of xi,
and variance σ2

yi as a function of µyi , motivated by DESeq paper.
However, the σ2 = µ + αµ2 is the assumption in DESeq, it seems
not fit well with our data, where our dataset is under dispersion
(Fig 2(c)) and the relationship of mean and variance shown in
Fig 2(a) is hardly to say it is quadratic. At the time of writing, we
didn’t come up with a concrete model that is simple enough and fast
enough to be fitted against our data. We leave it as our future work.

K-mer correlation Beyond independent models, the k-mer
counts may not be independent. In order to build better model,
we verify this independence assumption in this project as well. We
explored the consequent k-mers counts to see how their counts are
related.

We first randomly choose some k-mers that have at least 2000
counts and calculate the count ratio of consequent 500 k-mers
counts. As shown in Figure 8, the count of consequent k− 1 k-mers
is strongly related with the beginning k-mer. On the other hand, the
correlation relationship is complicated. As the k-mer may near the
intron region, the consequent k-mers may not appear.

How to model correlation among k-mers is an open question, and
we leave this as our future work.

5 K-MER MAPPING
Beside identifying significant differential k-mers by statistical
model, we also like to know how many k-mers that can be
perfectly matched to genome and transcriptome. There are a total
of 112,919,483 unique K-mers from reads data and 16,461,925 k-
mers from genome and 14,084,301 k-mers from transcriptome. To
map the k-mers of sequencing data to genome or transcriptome,
Bowtie[7] can build index for genome or transcriptome and then
locate the k-mers in the reads data. However, Bowtie is not
efficient for perfect k-mer matching with fixed length. Instead, we
build k-mer index on the reads data and then match k-mers of
genome and transcriptome on it. The size of k-mers on genome and
transcriptome much less than the k-mers from reads data, thus the
matching is more efficient.
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Fig. 9. The K-mer mapping rate for k-mers with small row count sums.

5.1 T-test Mapping Result
Given the K-mers selected by the T-test, we mapped them to the
genome and transcriptome and the result is shown in Table 5. It
can be seen that a larger α results in more “significant differential”
k-mers and a larger matching rate.

Table 5. K-mers identified by T-test with different parameters and matching
result on genome and transcriptome.

α = 0.01 α = 0.05

# k-mers 2,889,408 3,971,516
% matched to genome 25.57% 28.55%
% matched to transcriptome 12.98% 14.63%

5.2 All K-mers Mapping Result
Below are some statistics about the k-mers mapping:

1. 14.58% of all unique K-mers from reads data can be mapped
to genome.

2. 12.69% of all unique K-mers from reads data can be mapped
to transcriptome.

3. 297,522 (0.26%) K-mers have zero count variance across
samples, and 80.57% of them are all ones.

4. 873,078 ( 0.77%) K-mers have different count patterns across
samples.

We can see that approximately 86% of unique k-mers from reads
data can not be mapped to anywhere. To explain this low rate
matching, we analyzed the unmatched k-mers in the reads data. We
find that 70% of all unique K-mers appeared only once across all
samples and only 0.002% of these K-mers can be matched to the
genome. We calculate the proportion of k-mers that can be matched
for k-mers with the total counts less than 10. The proposition is
shown in Figure 9. We can see that the probability of matching is
quite low for k-mers with small counts.

Those unmatched k-mers could be generated from alternative
splicing events and but a k-mer with too small is not reliable and
could probably be generated by sequencing erors. Fr example, if
the sequencing error rate is 3%, the probability of generating an

error k-mer is 1− 0.9725 = 0.533, which may explain why a large
proportion of k-mers cannot be matched.

6 CONCLUSIONS AND FUTURE WORK
In this project, we conduct the first study on k-mer based statistical
method for alternative splicing event analysis. We explore several
statistical methods based on k-mer counts to identify significantly
differential K-mers including T-test, DESeq, and a joint distribution
model. We also develop a fast method for k-mer mapping, which is
2 orders of magnitude faster than Bowtie.

For future work, we plan to map k-mers with 1 or 2 error tolerance
onto genome or transcriptome data in order to verify whether the
unmapped k-mers are resulted from splicing events or sequencing
errors. Besides, taking the strong correlation of consecutive k-
mers into account, we could design a more accurate model to
identify splicing events. Additionally, more experiments need to be
conducted to verify the robustness of the statistical models.
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